Gonadotropin-releasing hormone (GnRH), a central regulator of reproductive function in all vertebrates, exerts its effects via binding to the GnRH receptor (GnRHR) in the pituitary gonadotrophs. The GnRHR is a member of the G-protein coupled receptor (GPCR) superfarnily. A second form of the GnRHR (type II), other than the pituitary gonadotrope GnRHR (type I) has been proposed to exist and to play a role other than the classical endocrine role of the pituitary GnRHR. Elucidation of amino acid residues of the GnRHR that are crucial for ligand binding, activation of the receptor, and coupling to the G-protein, is important in understanding structure-function relationships towards the design of drugs for therapeutic intervention. Such information can often be deduced by a comparison between conserved and non-conserved amino acid residues of GnRHRs from different species. At the start of this project no non-mammalian or invertebrate, and only some of the eutherian mammalian type I GnRHRs had been cloned. The aim of this project was to clone novel GnRHRs, i.e. type I and type II GnRHRs from redbait and mole and type II mouse and human GnRHRs using polymerase chain reaction (PCR) strategies. PCR was performed with degenerate primers designed to human type I GnRHR to areas that are not conserved between GPCRs in general, but are conserved between mammalian GnRHRs.
Identifer | oai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:uct/oai:localhost:11427/26968 |
Date | January 1998 |
Creators | Hutchinson, Emerentia |
Publisher | University of Cape Town, Faculty of Health Sciences, Division of Chemical Pathology |
Source Sets | South African National ETD Portal |
Language | English |
Detected Language | English |
Type | Master Thesis, Masters, MSc (Med) |
Format | application/pdf |
Page generated in 0.0062 seconds