I investigated the ecological functions of halogenated secondary metabolites from the red alga Asparagopsis armata, their localisation in specialised cells and also their cost of production. A. armata produces large amounts of halogenated metabolites ( < 20 ??g / mg dry weight) that are sequestered in gland cells, as was demonstrated with light, epifluorescence and transmission electron microscopy. Cellular structures were identified that likely assist the release of metabolites from the gland cells to the algal surface. The halogenated metabolites of A. armata have multiple ecological roles, functioning as both inhibitors of bacterial fouling and as herbivore deterrents. Their activity against bacteria and herbivores was measured by a novel test in which the metabolites were manipulated in A. armata by omitting bromide ions from the culture media. This technique prevented the production of halogenated metabolites, but did not impact on other aspects of algal biology. Algae lacking halogenated metabolites (bromide [-] algae) had higher densities of epiphytic bacteria than those that continued to produce metabolites (bromide [+] algae). Bioassays with pure compounds against individual bacterial isolates further supported an inhibitory role for the halogenated metabolites against epiphytic bacteria, and also indicated an affect on bacterial community structure as well as abundance. Bromide (+) A. armata produced halogenated metabolites that also deterred feeding by two herbivores (an amphipod and an abalone), but not a third (an opisthobranch mollusc). A novel outcome from these feeding assays was the demonstration of a relationship between herbivore size and consumption of the chemically defended A. armata by the abalone Haliotis rubra. In addition to the fitness benefits gained from chemical defence, there were also costs for allocating resources to secondary metabolites. These costs were only detected under limiting light resources, consistent with predictions of the plant defence models. The integration of chemical analyses and cellular measures of chemical defence proved essential in elucidating resource allocation to chemical defence in the filamentous stage of A. armata. This thesis highlights that the simple relationships between growth and defence in filamentous algae can provide an excellent model for studies of the ecology and evolution of chemical defences in marine algae.
Identifer | oai:union.ndltd.org:ADTP/212713 |
Date | January 2006 |
Creators | Paul, Nicholas Andrew, School of Biological, Earth & Environmental Sciences, UNSW |
Publisher | Awarded by:University of New South Wales. School of Biological, Earth and Environmental Sciences |
Source Sets | Australiasian Digital Theses Program |
Language | English |
Detected Language | English |
Rights | Copyright Nicholas Andrew Paul, http://unsworks.unsw.edu.au/copyright |
Page generated in 0.0015 seconds