Return to search

Development Of A Tin Oxide Based Thermoelectric Gas Sensor For Volatile Organic Compounds

Today there is a great deal of interest in the development of gas sensors for applications like air pollution monitoring, indoor environment control, detection of harmful gases in mines etc. Based on different sensing principles, a large variety of sensors such as semiconductor gas sensors, thermoelectric gas sensors, optical sensors and thermal conductivity sensors have been developed.
The present thesis reports a detailed account of a novel method followed for the design and development of a thermoelectric gas sensor for sensing of Volatile Organic
Compounds.
Thermoelectric effect is one of the highly reliable and important working principles that is widely being put into practical applications. The thermoelectric property of
semiconducting tin oxide film has been utilized in the sensor that has been developed. The thermoelectric property of semiconducting tin oxide film has been utilized in the sensor. The deposition parameters for sputtering of tin oxide film have been optimized to obtain a high seebeck coefficient. A test set-up to characterize the deposited films for their thermoelectric property has been designed and developed.
A novel method of increasing the seebeck coefficient of tin oxide films has been
successfully implemented. Thin films of chromium, copper and silver were used for this purpose. Deposition of the semiconducting oxide on strips of metal films has led to a noticeable increase in the seebeck coefficient of the oxide film without significantly affecting its thermal conductivity.
The next part of our work involved development of a gas sensor using this thermoelectric film. These sensors were further tested for their response to volatile organic compounds. The sensor showed significant sensitivity to the test gases at relatively low temperatures.
In addition to this, the developed sensor is also selective to acetone gas.

  1. http://hdl.handle.net/2005/623
Identiferoai:union.ndltd.org:IISc/oai:etd.ncsi.iisc.ernet.in:2005/623
Date01 1900
CreatorsAnuradha, S
ContributorsRajanna, K
Source SetsIndia Institute of Science
Languageen_US
Detected LanguageEnglish
TypeThesis
RelationG21074

Page generated in 0.0027 seconds