Hypoxia (low physiological O<sub>2</sub> levels) is a characteristic of solid tumours. It not only alters the chemical microenvironment of a tumour but initiates a number of mechanisms which enable cells to cope and thrive under these conditions, resulting in therapy-resistant and aggressive tumours. The replication stress induced by severe hypoxia activates a DNA damage response which involves the kinases ATR and Chk1. Moreover, periods of hypoxia are often followed by reoxygenation, which induces DNA damage. Chk1 inhibitors have been used to potentiate chemotherapy with cytotoxic agents and have recently been proposed as single agents in tumours with high levels of replication stress. However, inhibition of Chk1 also affects normal DNA replication, cell cycle progression and DNA repair. The herein presented study chose known inhibitors of Chk1 and, with methods of synthetic organic chemistry, modified them into agents to selectively target hypoxic cells. Three different Chk1 inhibitors were selected and bioreductive analogues synthesised which were evaluated in chemical, biochemical and cellular assays. We found a convenient route to access a precursor of the bioreductive 2-nitroimidazole group and established a three-step protocol for the testing of bioreductive drugs. This protocol allows us to determine whether a bioreductive drug undergoes reduction and prodrug activation. In addition, bioreductive Chk1 inhibitors were shown to induce DNA damage and cellular toxicity in a hypoxia-selective fashion. While reduction of the prodrugs occurred in all three cases, fragmentation was always the rate-limiting step. We propose that the use of bioreductive Chk1 inhibitors is a promising strategy to target the most therapy-resistant tumour fraction while sparing normal tissue.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:692870 |
Date | January 2015 |
Creators | Körner, Cindy |
Contributors | Hammond, Ester M. ; Conway, Stuart J. |
Publisher | University of Oxford |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://ora.ox.ac.uk/objects/uuid:10928a98-bfc0-4628-8edc-295642d4c05c |
Page generated in 0.1394 seconds