There is great interest in miniaturized analytical systems for life science research, the clinical environment, drug discovery, biotechnology, quality control, and environmental monitoring and numerous articles have been written which predict the success of microfluidic based systems. It was demonstrated in this work that a microfluidic flow system could be quickly and easily manufactured in a research lab environment without the need for clean room facilities. The microfluidic device was created using polymethylmethacrylate, a CO2 laser and a standard oven. The device was designed, manufactured and ready for use within three hours. This work also investigated a chemiluminescent system which was intended for use in protease assays in the microfluidic device. This work also focused on the use of photoinitiated polymer monoliths, with immobilized tannic acid, as protein preconcentrators. The function of the monolithic devices was demonstrated by pumping low concentration solutions of BSA BODIPY® FL through the monolith. Both loading and elution were done using pressure. It was shown that BSA could be concentrated on and successfully eluted from the monolith. The elution volume for a 125 nl monolith was found to be 4 μl. Therefore an injection of a 60 μl sample of 1 x 10⁻⁹M BSA BODIPY ® FL gave rise to a concentration factor of 15. The pH optimum for the binding of BSA BODIPY ® FL was found to be pH 8.0 and the loading capacity of the tannic acid monolith was found to be 0.6 mg.ml⁻¹.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:413588 |
Date | January 2004 |
Creators | Barrett, Louise M. |
Publisher | Loughborough University |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | https://dspace.lboro.ac.uk/2134/16615 |
Page generated in 0.002 seconds