The development of a framework for the automated analysis of inductively couple plasma atomic emission spectroscopy is present. Some of the research that lead to current state of this framework is presented. A small expert system that uses information about the current sample to generate a line search strategy which minimizes the number of emission lines which need to be measured, and avoids spectral overlaps when possible. A program is presented that evaluates the minimum number of spectral windows required to perform elemental analysis by ICP-AES, given a certain spectral window width. A method with the potential for rapidly ascertaining the physical properties of the sample matrix is presented. This system has the potential to help reduce sample introduction related system failures. Finally, three optimization algorithms are compared in their ability to optimize ICP-AES performance, from this an optimization module was developed for inclusion in the automated analysis framework.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.34479 |
Date | January 1996 |
Creators | Webb, Douglas P. |
Contributors | Salin, Eric D. (advisor) |
Publisher | McGill University |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Format | application/pdf |
Coverage | Doctor of Philosophy (Department of Chemistry.) |
Rights | All items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated. |
Relation | alephsysno: 001554819, proquestno: NQ30413, Theses scanned by UMI/ProQuest. |
Page generated in 0.0023 seconds