Over the past few decades, tremendous efforts have been made to develop nanomaterials for biotechnological applications such as therapeutics. Understanding and engineering interfaces between biomacromolecules and nanomaterials is a key to the creation of successful therapeutic systems. My research has been oriented toward developing therapeutic systems using gold nanoparticles (AuNPs) incorporating material science, organic synthesis, and biology. For this purpose, mixed monolayer protected AuNPs (∼2 nm core size) with various functional groups have been employed for triggering therapeutic effects. Several strategies have been accomplished using anticancer drugs that non-covalently and covalently incorporate onto AuNPs as a drug delivery carrier. Alternatively, AuNPs were developed by regulating host-guest complexation processes inside the cell, allowing control of the therapeutic effect of the AuNP. In addition, by using host-guest chemical events on the AuNPs, exocytosis of the AuNPs was controlled, enabling their prolonged retention inside of the cells, providing new strategies for improving conventional drug delivery systems. Therefore, engineering of the AuNP surface can afford new pathways for designing and improving therapeutics.
Identifer | oai:union.ndltd.org:UMASS/oai:scholarworks.umass.edu:dissertations-6513 |
Date | 01 January 2011 |
Creators | Kim, Chaekyu |
Publisher | ScholarWorks@UMass Amherst |
Source Sets | University of Massachusetts, Amherst |
Language | English |
Detected Language | English |
Type | text |
Source | Doctoral Dissertations Available from Proquest |
Page generated in 0.0106 seconds