Return to search

Modification of Indium Tin Oxide Surfaces with Phosphonic Acid Functionalized Phthalocyanines

The overall efficiency of organic photovoltaics cells (OPVs) is influenced by the nature of the charge injection barrier at the transparent conducting oxide (TCO) bottom contact. Modification of the transparent conducting oxide (TCO)/organic interface with an electroactive molecular monolayer will potentially create a robust ohmic contact that will influence the efficiency of hole injection into the TCO. Asymmetric zinc Phthalocyanines (ZnPc) with a flexible phosphonic acid (PA) linker have been synthesized and used to modify indium tin oxide (ITO) surfaces. The adsorption of PA functionalized asymmetric ZnPcs on an ITO/waveguide was monitored using attenuated total reflectance (ATR) spectroscopy. Polarized dependent ATR spectroscopy was used to determine the orientation of these absorbed subpopulations species on ITO modified surfaces as a function of wavelength using transverse electric (TE) or transverse magnetic (TM) polarized light. The first oxidation potential on absorbed monolayers was found by cyclic voltammetry to be resolved into two peaks indicative of two electrochemically distinct subpopulations of molecules, atributed to aggregates and monomerics forms of PA functionalized ZnPcs. Potential modulated ATR (PM-ATR) spectroelechtrochemistry was employed to measure the charge transfer rates constants (k(s,app)) at ITO modified surfaces using TE and TM polarized light. Faster charge transfer rate constants were found for molecules with a smaller tunneling distance. A k(s,app) of 3.9 x 10⁴ s⁻¹ represents the fastest rate measured for PA functionalized ZnPc chromophore tethered to an ITO waveguide electrode by PM-ATR. We synthesized and characterized the first examples of PA functionalized RuPcs to investigate the effect of molecular orientation on charge transfer properties at an ITO/organic interface. PA functionalized RuPcs have the ability to coordinate axial ligand to suppress aggregation, providing the flexibility of connecting the anchoring group through the axial position of the metal and allowing chemisorption of the molecule in plane with ITO. Cyclic voltammetry and ATR UV/vis spectroscopy on the modified ITO surface demonstrated a surface composition of a closed-packed monolayer of monomeric species. Measurement of the charge transfer rates constants demonstrated that RuPc anchored to ITO exhibited slow rates compared to corresponding surface bound ZnPcs. Finally, we describe the synthesis and characterization of a new PA functionalized N-pyridinyl perylenediimide (PDI)-RuPc donor-acceptor dyad capable of chemisorption to ITO surfaces as a molecular-level heterojunction system to study photo induced charge separated states. The developed ensemble was proven to be stable on ITO for further study of charge injection events from the dyad to the oxide surface.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/344225
Date January 2014
CreatorsOquendo Galarza, Luis E.
ContributorsMcGrath, Dominic V., Glass, Richard, Christie, Hamish, Armstrong, Neal R., Saavedra, S. Scott, McGrath, Dominic V.
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
Languageen_US
Detected LanguageEnglish
Typetext, Electronic Dissertation
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.0012 seconds