When (Et$\sb4$N) $\sb3$(Bi$\{$Fe(CO)$\sb4\}\sb4$) is treated with main group metal halides complicated disproportionation reactions occur. The reaction with BiCl$\sb3$ in MeCN yields (Et$\sb4$N) (BiFe$\sb3$(CO)$\sb{10}$), (Et$\sb4$N) $\sb2$(Bi$\sb2$Fe$\sb4$(CO)$\sb{13}$), and (Et$\sb4$N) $\sb2$(Bi$\sb4$Fe$\sb4$(CO)$\sb{13}$) while treatment with SnEt$\sb2$Cl$\sb2$ or CBr$\sb4$ gives the oxidation product (Et$\sb4$N) $\sb2$(Bi$\sb4$Fe$\sb4$(CO)$\sb{13}$) in high yield. Oxidation of (Et$\sb4$N) $\sb3$(Bi$\{$Fe(CO)$\sb4\}\sb4$) with 2 equivalents of (Cu(MeCN)$\sb4$) (BF$\sb4$) or MeI affords (Et$\sb4$N) (BiFe$\sb3$(CO)$\sb{10}$).
(Et$\sb4$N) $\sb2$(Bi$\sb2$Fe$\sb4$(CO)$\sb{13}$) is oxidized by (Cu(MeCN)$\sb4$) (BF$\sb4$) forming Bi$\sb2$Fe$\sb3$(CO)$\sb9$ and reacts with CO (850 psi) to produce (Et$\sb4$N) $\sb2$(Bi$\sb4$Fe$\sb4$(CO)$\sb{13}$). Bi$\sb2$Fe$\sb3$(CO)$\sb9$ is reduced readily with Na/Hg forming one- and two-electron-reduction products. Two-electron-reduction can also be achieved by treating Bi$\sb2$Fe$\sb3$(CO)$\sb9$ with 2 equivalents of cobaltocene in CH$\sb2$Cl$\sb2$. The elemental analyses and spectroscopic data for the two-electron-reduction product support the formulation as (Cp$\sb2$Co) $\sb2$(Bi$\sb2$Fe$\sb3$(CO)$\sb9$). The (Bi$\sb2$Fe$\sb3$(CO)$\sb9$) $\sp{2-}$ anion can be reconverted to Bi$\sb2$Fe$\sb3$(CO)$\sb9$ in 90% spectroscopic yield when treated with (Cu(MeCN)$\sb4$) (BF$\sb4$).
The reaction of (Et$\sb4$N) $\sb2$(Fe$\sb2$(CO)$\sb8$) with BiCl$\sb3$ or SbCl$\sb3$ forms compounds proposed to be (Et$\sb4$N) (EFe$\sb3$(CO)$\sb{12}$) (E = Bi, Sb) based on elemental analyses and spectroscopic data. The treatment of (Et$\sb4$N) (BiFe$\sb3$(CO)$\sb{12}$) or (Et$\sb4$N) (SbFe$\sb3$(CO)$\sb{12}$) with Cr(CO)$\sb5$(THF) produces (Et$\sb4$N) (EFe$\sb3$Cr(CO)$\sb{17}$) (E = Bi, Sb), respectively, while methylation of (Et$\sb4$N) (BiFe$\sb3$(CO)$\sb{12}$) afford Bi$\sb2$Fe$\sb2$(CO)$\sb8$Me$\sb2$. Oxidation of (Et$\sb4$N) (BiFe$\sb3$(CO)$\sb{12}$) with (Cu(MeCN)$\sb4$) (BF$\sb4$) yields Bi$\sb2$Fe$\sb3$(CO)$\sb9$ whereas the same reaction using of (Et$\sb4$N) (SbFe$\sb3$(CO)$\sb{12}$) gives Sb$\sb2$Fe$\sb6$(CO)$\sb{22}$. Refluxing (Et$\sb4$N) (BiFe$\sb3$(CO)$\sb{12}$) or (Et$\sb4$N) (SbFe$\sb3$(CO)$\sb{12}$) in acetonitrile produces (Et$\sb4$N) $\sb2$(Bi$\sb2$Fe$\sb4$(CO)$\sb{13}$) and (Et$\sb4$N) $\sb2$(Sb$\sb2$Fe$\sb5$(CO)$\sb{17}$), respectively.
(Et$\sb4$N) (EFe$\sb3$Cr(CO)$\sb{17}$) (E = Bi, Sb), Bi$\sb2$Fe$\sb2$(CO)$\sb8$Me$\sb2$, (Et$\sb4$N) $\sb2$(Sb$\sb2$Fe$\sb5$(CO)$\sb{17}$), and Sb$\sb2$Fe$\sb6$(CO)$\sb{22}$ have been crystallographically characterized. (Et$\sb4$N) (EFe$\sb3$Cr(CO)$\sb{17}$) (E = Bi, Sb) displays a central main group atom bonded to one Fe$\sb2$(CO)$\sb8$ unit, one Cr(CO)$\sb5$ ligand, and one Fe(CO)$\sb4$ moiety. Bi$\sb2$Fe$\sb2$(CO)$\sb8$Me$\sb2$ contains a Bi$\sb2$Fe$\sb2$ parallelogram. A Me group is bonded to each pyramidal bismuth atom and the iron atoms are pseudooctahedrally coordinated. (Et$\sb4$N) $\sb2$(Sb$\sb2$Fe$\sb5$(CO)$\sb{17}$) has a square-planar Sb$\sb2$Fe$\sb3$ core geometry, with the external Fe(CO)$\sb4$ group bonded to each Sb atom. Sb$\sb2$Fe$\sb6$(CO)$\sb{22}$ is composed of an Fe$\sb2$(CO)$\sb6$ unit bridged by two Sb atoms. The coordination of each antimony atom is completed by bonding to an Fe$\sb2$(Co)$\sb8$ moiety.
Identifer | oai:union.ndltd.org:RICE/oai:scholarship.rice.edu:1911/16295 |
Date | January 1989 |
Creators | Shieh, Minghuey |
Contributors | Whitmire, Kenton H. |
Source Sets | Rice University |
Language | English |
Detected Language | English |
Type | Thesis, Text |
Format | 151 p., application/pdf |
Page generated in 0.0106 seconds