Return to search

The growth and water relations of a coastal halophyte, Salicornia bigelovii

The succulent, annual euhalophyte, Salicornia bigelovii was grown in 1, 10, 35, 45 and 60 ppt Instant Ocean. This range represents approximately 1/35 to nearly twice the salinity of seawater. The plants in the 4 highest salinities had common final dry weights and seed yields of about 60 and 11 g, respectively, while the 1 ppt plants had 28 and nearly 5 g, respectively. The water relations data reflected the growth and seed production of the plants. The plants in the 4 higher salinities had water potentials sufficient to generate large import gradients and osmotic potentials which contributed to substantial turgors. The 1 ppt plants had a gradient like the rest, but a very low turgor of 0.11 MPa which was barely 23% of that of the lowest of the other treatments. Higher salinities resulted in slightly greater organic and inorganic osmotica contents. Overall, these results suggest a relatively fixed genetic response to a wide range of salinities, as well as an inability to function well at very low salinities. No plant grown at 0 ppt was ever able to reproduce. Therefore, this plant is an obligate halophyte. Experiments in the plant's native coastal estuary indicated meristem water potentials fluctuate with the tides, although they remain about 1.5 MPa below the corresponding soil water potentials. The plants occupy a discrete elevational range throughout the estuary, spending about 1/3 of their daylight hours submerged, and apparently never see dryness. Phenotype differences in the estuary suggest that, within the habitat, pacing and consequent resource domination may be important parameters affecting plant size and possibly fitness. Nitrogen, which is characteristically rare in this and other estuaries, may be critical in this regard. The plants produce large quantities of glycine-betaine, which may be for simultaneous osmoticum use and nitrogen storage. Most roots occur in the first 3 inches of soil. A mechanism is proposed, based on highly efficient compartmentation at the cellular level and the shuttling of organic osmoticum across the tonoplast, by which the tidally based cyclical water potentials could be explained.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/191114
Date January 1986
CreatorsWeeks, Jon Randall,1949-
ContributorsO'Leary, James W., Ward, Oscar G., Ferris, W., Matsuda, Kaoru, Venable, L.
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
LanguageEnglish
Detected LanguageEnglish
TypeDissertation-Reproduction (electronic), text
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.0021 seconds