Les batteries aux ions lithium sont certainement un des moteurs à la mobilité qu’a vu notre vie quotidienne ces 30 dernières années, depuis leur commercialisation par Sony pour alimenter des caméscopes portatifs. Cette électrification est aujourd’hui omniprésente : nous pouvons rester connectés en tout temps à Internet grâce à nos téléphones ou encore nous déplacer dans un véhicule qui n’émet pas de gaz à effet de serre. Cette révolution est en particulier alimentée par une recherche qui ne cesse de croître et qui s’attache à augmenter l’énergie des matériaux d’électrodes, réduire les risques d’incendie ou encore diminuer l’empreinte carbone des procédés de manufactures de batteries. En effet, les électrodes sont communément enduites, ce qui nécessite d’énormes quantités de solvant pendant leur phase de fabrication. Ces solvants, nécessaires pour former la porosité des membranes composites et avoir une dispersion homogène des particules, entrainent malheureusement des coûts très importants et sont souvent cancérigènes, mutagènes et reprotoxiques.
Ce manuscrit détaille les travaux réalisés en partenariat avec une entreprise privée avec laquelle a été mis au point un nouveau procédé de réalisation d’électrodes sans solvant basé sur l’extrusion de poudres et de polymères fondus. La contrainte principale du procédé est la nécessité d’utiliser un élastomère dans la formulation de l’électrode ; or cette classe de matériau est très peu répandue dans le domaine des batteries.
Ces travaux ont donc validé l’emploi d’un nouveau polymère commercial dans les nouvelles formulations sans solvant, grâce à sa très grande stabilité chimique et électrochimique. À l’aide de plans d’expériences de mélange, formalisés et utilisés pour la première fois en formulation d’électrode, il a été possible d’optimiser des électrodes de batteries Li-ion de puissance en maximisant la quantité de matière active. Ces formulations optimales ont alors été utilisées pour réaliser sans solvant des électrodes de nouvelle génération, ce qui a permis d’identifier l’effet néfaste du procédé sur la qualité du réseau électronique, d’où la nécessité de revoir le protocole de réalisation.
Ce projet ouvre la voie vers une utilisation plus systématique de méthodes statistiques et de prédiction pour étudier et optimiser de nouveaux matériaux ou composites. / Li-ion batteries are one of the driving forces of everyday mobility since they were introduced on the market in 1991 by Sony to power portable cameras. Today, electrification is ubiquitous. We are always connected to the Internet with our phones and we can travel in vehicles that do not emit greenhouse gases. The ever-growing research in the field is certainly powering this revolution, with improvements towards the maximum energy in a device, as well as increasing their safety or mitigating the carbon footprint related to their manufacture. Indeed, electrodes are usually tape-casted, a process that requires huge quantities of solvents. These solvents are often organic and hence very toxic. They are also necessary to create the porosity in the composite membranes and to provide a continuous medium to homogeneously disperse the electrode’s components.
This manuscript details the work that was conducted in collaboration with a private industrial partner who developed a new and solvent-free process to manufacture electrodes based on powder extrusions and melted polymers. The main constraint to this process is the need to employ elastomers, a class of materials seldom used in the Li-ion battery community.
Here, the use of a commercial thermoplastic elastomer in the new dry process was thus validated through chemical and electrochemical stability studies. Designs of Experiments were first formalized to optimize the Li-ion battery electrodes’ formulations before applying it to two systems. It was found that it is necessary to maximize the active material weight content and keep a very small fraction of carbon additives to maximize the capacity retention. Finally, by extruding these optimal formulations, it was discovered that the dry process has a significant impact on the electronic network’s quality, and changes to both formulation and mixing protocol ought to be carried out.
This project certainly opens the way to a more systematic use of predictive and statistical methods to optimize and study new materials and composites.
Identifer | oai:union.ndltd.org:umontreal.ca/oai:papyrus.bib.umontreal.ca:1866/23404 |
Date | 12 1900 |
Creators | Rynne, Olivier |
Contributors | Dollé, Mickaël, Rochefort, Dominic |
Source Sets | Université de Montréal |
Language | fra |
Detected Language | French |
Type | Thèse ou mémoire / Thesis or Dissertation |
Page generated in 0.0031 seconds