Return to search

A Platform-Centric UML-/XML-Enhanced HW/SW Codesign Method for the Development of SoC Systems

As today's real-time embedded systems grow increasingly ubiquitous, rising complexity ensues as more and more functionalities are integrated. Market dynamics and competitiveness further constrict the technology-to-market time requirement, consequently pushing it to the very forefront of consideration during the development process. Traditional system development approaches could no longer efficiently cope with such formidable demands, and a paradigm shift has been perceived by many as a mandate. This thesis presents a novel platform-centric SoC design method that relies on a platform-based design to expedite the overall development process. The proposed approach offers a new perspective towards the complex systems design paradigm, and can attain the desired paradigm shift through extensive reuse and flexibility. It offers a unified communication means for all sectors involved in the development process: Semiconductor vendors can use it to publish their platform specifications; Tool vendors can use it to develop and/or enhance their tools; System developers can use it to efficiently develop the system. Key technologies are also identified, namely the Extensible Markup Language (XML) and the Unified Modeling Language (UML), that realize the proposed approach. This thesis extends XML to attain a standard means for modeling, and processing a large amount of reusable platform-related data. Additionally, it employs UML's own extension mechanism to derive a UML dialect that can be used to model real-time systems and characteristics. This UML dialect, i.e. the UML profile for Codesign Modeling Framework (UML-CMF), remains compliant to the UML standard. A sub-profile within the UML profile for Codesign Modeling Framework is also developed so as to furnish a means for efficient modeling of platforms, and that can be seamlessly integrated with other real-time modeling capabilities offered by the UML-CMF. Such an effort yields a robust UML-compliant language that is suitable for a general platform-based modeling and design. A practical use of the proposed approach is demonstrated through a powerful case study that applies the approach to develop a digital camera system. The results are comparatively presented against the SpecC approach in terms of cost metrics based on the COCOMO II model.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/7944
Date11 April 2004
CreatorsArpnikanondt, Chonlameth
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Languageen_US
Detected LanguageEnglish
TypeDissertation
Format2381060 bytes, application/pdf

Page generated in 0.0019 seconds