L’omniprésence de produits de synthèse dans des domaines allant de la pharmaceutique à la pétrochimie dépend d’une industrie chimique forte s’appuyant en partiesur la maîtrise de procédés catalytiques. La catalyse hétérogène est particulièrement prisée puisqu’il est facile de récupérer et de réutiliser le catalyseur. Une approche éprouvée pour améliorer l’efficacité en catalyse hétérogène consiste à mieux comprendre les interactions entre les substrats et les sites catalytiques individuels. De nombreuses questions demeurent quant à l’activité et à la sélectivité des sites actifs en catalyse hétérogène asymétrique. Mes travaux de doctorat concernent spécifiquement la caractérisation des sites catalytiques pour l’hydrogénation énantiosélective de cétones activées sur une surface de Pt(111) chiralement modifiée par des molécules apparentées à la cinchonidine, la réaction d’Orito, et ce, par microscopie à effet tunnel (STM). La résolution du microscope est suffisante pour cataloguer des dizaines de milliers de complexes selon leur géométrie d’assemblage. Les assemblages les plus abondants sont comparés aux structures les plus stables calculées selon les calculs DFT du groupe du Pr Hammer, de l’Université d’Aarhus, au Da-nemark. L’adéquation entre les motifs les plus fréquemment observés par STM et lesimages STM simulées à partir des assemblages les plus stables selon la DFT permet d’assigner une pro-chiralité aux structures cataloguées. La pro-chiralité identifie un complexe selon la chiralité de l’alcool qu’il formerait si le substrat était hydrogéné dans cette géométrie. On peut comparer le ratio pro-chiral (pr) des complexes formés sur la surface au ratio énantiomérique (er) formé lors de la réaction. L’approche combinée STM-DFT permet de comprendre comment les forces intermoléculaires divergent d’un complexe à l’autre, expliquant la stéréosélection. Le chapitre 3 se base sur une série d’expériences comparant les assemblages formés par le substrat cétopantolactone (KPL) avec trois modificateurs chiraux partageant le même groupement ancrant : le (R)-1-(1-naphthyl) éthylamine ((R)-NEA), le (R)-N-Méthyl-1-(1-naphthyl) éthylamine ((R)-MNEA) et le (R)-1-naphthyl-1,2-éthanediol ((R)-NED). Les divergences observées pour les abondances relatives des géométries d’assemblages proviennent de subtiles différences entre les groupements donneurs de liaisons hydrogène des trois modificateurs chiraux. On note qu’autant pour lesystème (R)-NEA/KPL que pour le système (R)-NED/KPL, le pr et le er concordent, tandis qu’ils divergent pour le système (R)-MNEA/KPL. Le chapitre 4 cherche à comprendre l’effet d’une modification simple sur les assemblages formés par le (R)-NEA et le substrat pro-chiral 2,2,2-trifluoroacétophénone (TFAP). Pour ce faire, un nouveau modificateur chiral a été synthétisé : le (R)-1-(8-methyl-1-naphthyl)éthylamine ((R)-8MeNEA). Celui-ci ne se distingue du (R)-NEA que par l’ajout d’un méthyle sur le groupement aromatique non-substitué. La présence d’un groupement méthyle supplémentaire vient affecter la préorganisation des substrats dans certains sites catalytiques du (R)-NEA, ainsi que la diffusion vers et entre ceux-ci. Évidemment, les assemblages où le TFAP se retrouverait à l’endroit de la substitution sont fortement perturbés par encombrement stérique et sont doncpeu observés. De plus, les populations relatives d’assemblages éloignés du site del’altération changent elles aussi par rapport à celles observées pour le (R)-NEA. De tels effets secondaires doivent être considérés lors de la conception rationnelle de modificateurs chiraux. Le chapitre 5 compare les complexes formés par deux substrats pro-chiraux, le pyruvate de méthyle (MP) et le méthyle 3,3,3-trifluoropyruvate (MTFP), avec le (R)-NEA.Le MP, lorsqu’il y a peu d’hydrogène sur la surface et que la température est suffisamment élevée, peut former un énol sur la surface de platine. Cet intermédiaire énol n’est pas formé en milieu catalytique, riche en hydrogène. Un moyen d’éviter la formation de l’énol est d’utiliser le substrat prochiral MTFP, qui ne diffère du MP que par la substitution d’un groupement méthyle par un trifluorométhyle. Les assemblages impliquant MP et MTFP diffèrent, y compris aux températures auxquelles les deux substrats sont sous forme cétonique. Ces divergences s’expliquent par la plus grande électronégativité du CF3, qui modifie l’adsorption du carbonyle cétonique, et donc du substrat. Des mesures des populations relatives des diverses géométries d’adsorption des complexes (R)-NEA/MTFP à des températures croissantes révèlent que l’équilibre thermodynamique n’est bien approximé que pour des températures supérieures à 250 K. La mobilité accrue du MTFP à cette température lui permet desonder plus efficacement les divers sites auxquels il peut se lier sur la surface. / The widespread use of chemical synthesis – in domains as varied as the pharmaceutical and petrochemical industries – requires a strong chemical industry, relying onthe use of many catalytic processes. Heterogeneous catalysis is often favoured as it is easier to recycle and reuse the catalysts. A reliable way to improve efficiency in heterogeneous catalysis is to better understand how substrates interact with individual catalytic sites. Many questions remain relating to the activity and selectivity of active sites in asymmetric heterogeneous catalysis. My thesis deals with the characterization of catalyticsites for the enantioselective hydrogenation of activated ketones on chirally modified Pt(111), the so-called Orito reaction, using scanning tunnelling microscopy (STM). The chiral modifiers are structural analogues of cinchonidine. The resolution of STM is sufficient to catalogue tens of thousands of bimolecular complexes according to their interaction geometry. The most abundant motifs are compared to the most stable structures as computed from DFT calculations performed by Pr Hammer’s groupin Aarhus University, in Denmark. The agreement between the STM motifs and images simulated from the DFT calculations allow us to assign a pro-chirality to each complexation geometry. The pro-chirality labels complexes according to the chirality of the resulting alcohol if the substrate were to be hydrogenated in this configuration. We can compare the pro-chiral ratio (pr) for complexes observed by STM to the enantiomeric ratio (er) measured in a catalytic setting. Combining STM imaging with DFT calculations allow us to better understand why some complexation geometries are favoured, thus explaining stereoselction. Chapter 3 presents a series of experiments comparing the assemblies formed by the substrate ketopantolactone (KPL) with three chiral modifiers sharing a similar anchoring moiety: (R)-1-(1-naphthyl)ethylamine ((R)-NEA), (R)-N-Methyl-1-(1-naphthyl) ethylamine ((R)-MNEA) and (R)-1-naphthyl-1,2-ethanediol ((R)-NED). Differences between the observed populations for competing interaction geometries are ascribed to subtle variations in the hydrogen-bond donors moieties. We note that pr and er are roughly in agreement for (R)-NEA/KPL and (R)-NED/KPL assemblies, but not for (R)- MNEA / KPL. Chapter 4 tries to understand how a small structural alteration can change the complexes formed by (R)-NEA and the pro-chiral substrate 2,2,2-trifluoroacetophenone (TFAP). A new chiral modifier (R)-1-(8-methyl-1-naphthyl) ethylamine ((R)-8MeNEA), has been synthesized and differs from (R)-NEA only by an added methylmoiety on the non-substituted aromatic ring. This methyl changes the preorganisation states of chirality transfer complexes, and diffusion among the competing geometries. The binding configurations at the methyl substituent obviously disappear because of steric hindrance. We also record changes in the relative populations of complexation geometries away from the substitution. Such second-order changes must be taken into account for the rational design of chiral modifiers for heterogeneous catalysis. Chapter 5 compares chirality transfer complexes formed by two pro-chiral substrates, methylpyruvate(MP) and methyl3,3,3-trifluoropyruvate(MTFP), with(R)-NEA.MP can form an enolon Pt(111) in hydrogen poor environment, such asan ultra-high vacuum system, if the temperature is high enough. An alternative to MP which cannot form the enolisits trifluorinated analogue: MTFP. Populations of competing chirality transfer complexes involving MP and MTFP differ, including at temperatures below which the enol is formed. These divergences arise from the higher electronegativity of the CF3 moiety, which modifies the adsorption of the ketonic carbonyl, and hence of the whole pro-chiral substrate. The populations of competing (R)-NEA/MTFP geometries are found to better approximate the thermodynamic equilibrium at temperatures above 250 K. This can be explained by increased MTFP mobility, which allows the pro-chiral substrate to sample more efficiently all competing assemblies on the surface.
Identifer | oai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/37013 |
Date | 21 October 2019 |
Creators | Lemay, Jean-Christian |
Contributors | McBreen, Peter Hugh |
Source Sets | Université Laval |
Language | French |
Detected Language | French |
Type | thèse de doctorat, COAR1_1::Texte::Thèse::Thèse de doctorat |
Format | 1 ressource en ligne (xvii, 121 pages), application/pdf |
Rights | http://purl.org/coar/access_right/c_abf2 |
Page generated in 0.0038 seconds