Soluble surimi wash water (SWW) proteins could be recovered using
chitosan (Chi) complexed with alginate (Chi-Alg) generating co-products for feed
formulations. Chi with a degree of deacetylation (DD) of 84% complexed with Alg
at a mixing ratio (MR) of 0.2 was used to study Chi-Alg concentration and
treatment time protein recovery effects. Insoluble SWW solids were removed by
centrifugation and the supernatant was then adjusted to pH 6. Flocculation at 20��C
using Chi-Alg at 20, 40, 100 and 150 mg/L SWW was aided by 5 mm agitation and
holding for 30 mm, 1h and 24h. Concentration had an effect between low (20 and
40 mg/L) and high (100 and 150 mg/L) levels. Time had an effect between 30 min
and 1h but not between 1 and 24 h. Turbidity reduction was affected only by
concentration. 100 mg Chi-Alg/L SWW for 1 h achieved 83% protein adsorption
and 97% turbidity reduction while lower concentrations yielding higher adsorption
required longer times. Fourier Transform Infrared (FTIR) analysis of untreated and
Chi-Alg treated SWW solids confirmed protein adsorption. Amide band areas
normalized against a common 3005-2880 cm����� region confirmed the high protein
recovery by 100 mg Chi-Alg/L SWW. Six Chi samples differing in molecular
weight (MW) and degree of deacetylation (DD) were tested to recover soluble
SWW solids using 20, 40, and 100 mg Chi-Alg/L SWW (0.2 MR, 1h). High (94%,
93%) and low (75%) DD chitosan had lower protein adsorption (73-75%) when
compared to the intermediate (84%) DD chitosan (74-83%). Intermediate DD and
high MW Chi seemed to perform better; however, SY-1000 with 94% DD did not
follow this trend (79-86% protein adsorption, 85-92% turbidity reduction).
Insoluble SWW (P1) and soluble solids (P2) recovered using 150 mg Chi-
Alg/L SWW contained 61.4 and 73.1% protein, respectively. Rat diets formulated
with 10% protein substitution by P1 and 10% and 15% by P2 had acceptability and
protein efficiency ratios (PER) as high as the casein control with no deleterious
effects. Rat diets with 100% P2 protein substitution showed higher PER and net
protein ratio than the casein control with no deleterious effects. Protein recovered
from SWW using Chi-Alg has the potential to be used in commercial feed
formulations. / Graduation date: 2004
Identifer | oai:union.ndltd.org:ORGSU/oai:ir.library.oregonstate.edu:1957/30819 |
Date | 11 November 2003 |
Creators | Wibowo, Singgih |
Contributors | Torres, J. Antonio |
Source Sets | Oregon State University |
Language | en_US |
Detected Language | English |
Type | Thesis/Dissertation |
Page generated in 0.0022 seconds