Return to search

Uptake and sedimentation of arsenic, nickel, and uranium from uranium mine-impacted water by chlamydomonas noctigama

The primary aim of the research summarized in this thesis was to confirm or refute that algae are involved in metal sedimentation from surface water, and whether this activity, if any, is enhanced by increased phosphorus availability. <p>A small-scale laboratory-based experiment was devised to elucidate the role of the chlorophyte alga Chlamydomonas noctigama in the removal of arsenic, nickel and uranium from mine water. Results indicated that the presence of <i>C. noctigama</i> significantly enhanced the removal of these metals relative to treatments without cells. Metals were present in greater concentrations in particulate matter in treatments with cells compared to treatments without cells, and there was a corresponding decrease in the concentrations of dissolved metals. This leads to the conclusion that sedimentation was mainly biotically induced. <p>Additional evidence of biotic involvement in metal removal from water by <i>C. noctigama</i> was obtained by using EDX spectroscopy and X-PEEM spectromicroscopy to observe complexation of arsenic, nickel and uranium to C. noctigama cells. Arsenic, the metal which was present at the lowest concentration in the DJX water, was present on scanned cells in low concentrations, and nickel and uranium, which were present at high concentrations in the DJX water, were present at higher concentrations. Examination of a single cell using X-PEEM spectromicroscopy showed uranium co-localized with carbon and phosphorus on the exterior of the cell.
Crystalline particulate matter may have increased in the presence of cells. EDX spectroscopy showed that the crystalline particulate matter was possibly hydroxyapatite that contained various metals, including arsenic, nickel and uranium. EDX spectroscopy was used to determine the frequencies at which the cell-metal and particulate matter-metal associations occurred, and the relative concentrations of the metals associated with particulate matter. <p>No correlation between metal removal and phosphorus concentration in the media, or between algal density and phosphorus concentration was observed. However, phosphorus concentrations were not growth-limiting in these experiments, and so the effect of phosphorus on abiotic precipitation of metals remains unclear. <p>
Results suggest two mechanisms by which <i>C. noctigama</i> may remove arsenic, nickel and uranium from solution: by direct sorption to the exterior of the cell, and by sorption to a cell product. <p>An experiment using cells preserved in Lugols iodine (a common phytoplankton sample preservative) indiated that Lugols preserved samples could not be used to quantify metals using spectroscopy. Consequently, historical samples preserved with Lugols iodine cannot be analyzed by this method.

Identiferoai:union.ndltd.org:USASK/oai:usask.ca:etd-09152008-101734
Date22 September 2008
CreatorsQuiring, Erika Eliese
ContributorsNeal, Dick, Lawrence, John R., Cutler, Jeffrey, Wilson, Kenneth E.
PublisherUniversity of Saskatchewan
Source SetsUniversity of Saskatchewan Library
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://library.usask.ca/theses/available/etd-09152008-101734/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Saskatchewan or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0028 seconds