Ozonation is an integral process in ozone-biofiltration treatment systems and is beginning to be widely adopted worldwide for water reuse applications. Ozone is effective for pathogenic inactivation and organics oxidation: both increasing assimilable organic carbon for biofiltration and eliminating trace organic contaminants which may pose a threat to human health. However, ozone can also form disinfection byproducts such as bromate from the oxidation of naturally occurring anion bromide. Bromate is a known human carcinogen and is regulated by the EU, WHO, and USEPA to a maximum limit of 10µg/L. In waters high in bromide, especially above 100µg/L, bromate formation becomes a major concern. In the secondary wastewater effluent studied, bromide concentration may exceed 500µg/L. Several bromate suppression techniques have been devised in previous work, including free ammonia addition, monochloramination, and the chlorine-ammonia process. While free ammonia addition was not found to adequately reduce bromate formation below the required MCL, monochloramine addition and the chlorine-ammonia process were found to be effective. However, the impact of these chemical suppression techniques on organics oxidation and disinfection has not been fully studied. This study explored the impact of these bromate suppression techniques at a wide range of ozone doses on bromate formation, pathogenic inactivation, ozone-refractory organics oxidation through the surrogate 1,4-dioxane, and N-nitrosodimethylamine (NDMA) formation. Additionally, bromate suppression mechanisms of monochloramine were explored further through a variety of different water quality parameters, such as through hydroxyl radical exposure and ultraviolet absorption spectrum measurements, which were correlated and utilized to develop a hydroxyl radical exposure predictive model. / Master of Science / Ozone is a powerful oxidant used in water treatment in order to degrade contaminants of emerging concern into less harmful moieties and to inactivate pathogens. Upon application to process water, ozone quickly reacts with constituents in the water to form hydroxyl radicals: the most powerful oxidant in water treatment. These hydroxyl radicals, though with extremely short half-lives, are able to degrade ozone-recalcitrant organics, such as 1,4-dioxane through a process called advanced oxidation. Ozone itself also has the capability of inactivating a multitude of pathogenic organisms, including viruses Giardia and Cryptosporidium parvum when specific contacts times are met. However, ozone does have the potential to form disinfection byproducts such as Nnitrosodimethylamine (NDMA) and bromate. NDMA, though not currently regulated by the United States’ Environmental Protection Agency (USEPA), has a drinking water health advisory limit of 10ng/L in the State of California. Bromate, on the other hand, is a known human carcinogen regulated to 10µg/L by the USEPA. Formed within the ozone system from the naturally occurring ion bromide, bromate can be limited through various chemical treatments such as ammonia addition, pH adjustment, monochloramination, and the chlorine-ammonia process. To date, these methods of bromate suppression have not been comprehensively studied in terms of bromate suppression as well as disinfection and organics oxidation in water reuse systems. The purpose of this research was to minimize bromate formation while ensuring NDMA formation was minimized, and disinfection and organics oxidation were maximized. Through this study, system efficiencies were improved and water quality for future generations will be improved.
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/93530 |
Date | 10 September 2019 |
Creators | Buehlmann, Peter Hamilton |
Contributors | Environmental Science and Engineering, Pruden, Amy, Novak, John T., Bott, Charles B. |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Thesis |
Format | ETD, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.002 seconds