Return to search

Métamorphisme d'une chondrite à enstatite nommée Indarch : implication sur les phénomènes de différenciation planétaire. Application à la Terre

Les chondrites à enstatite partagent un réservoir commun de l'isotope de l'oxygène avec la Terre et la Lune. Cette caractéristique soulève la question d'une possible participation de ce type de météorites à la construction de la Terre. Egalement, l'étude des chondrites à enstatite permet d'apporter de nouvelles contraintes pour comprendre plus en détail l'histoire de la différenciation de petits corps planétaires soumis à des conditions réductrices. La première étude expérimentale systématique à haute pression et haute température d'une chondrite à enstatite a ainsi été mise en oeuvre, entre 1 et 25 GPa, et entre 1200°C et 2500°C, couvrant ainsi les conditions de pression et de température du manteau supérieur terrestre. La météorite qui a été choisie pour cette étude s'appelle Indarch. Il s'agit d'une chondrite à enstatite de type EH4. A 1 GPa, l'effet de la fO2 sur les relations de phases de la météorite, ainsi que sur les coefficients de partage entre métal et silicate liquide des éléments S, Si, Cr, Mn, Ni, et Mo est étudié spécifiquement. Les phases silicatées et métalliques subissent de grands changements lorsque la fO2 varie de IW-1.5 à IW-4.5. Des monosulfures contenant les éléments (Fe, Mg, Mn, Ca, Cr) sont présents aux fO2 les plus réduites. La phase métallique de nos échantillons est toujours liquide et comprend deux phases immiscibles riches en fer : l'une pauvre en S et riche en C, et l'autre riche en S et pauvre en C. La phase riche en C est également riche en Si aux fO2 les plus réduites. Les relations de phases d'Indarch ont été déterminées entre 3 et 25 GPa, et entre 1500°C et 2500°C, nous permettant de proposer le premier diagramme de phases en pression et température pour une chondrite à enstatite. La phase métallique est toujours liquide et il s'agit d'un alliage Fe-Ni-S à ces plus hautes pressions. La formation d'un noyau planétaire à basse pression (0 à 5 GPa) sous des conditions très réductrices ne peut expliquer les appauvrissements observés de S dans les manteaux silicatés alors que plusieurs wt% de Si pourront être piégés dans le noyau. En revanche, à plus haute pression, l'incorporation de S dans le noyau sera facilitée sous des conditions plus oxydantes. Finalement, notre étude permet de proposer un modèle d'évolution d'un matériau chondritique en cours d'accrétion sous des conditions rédox variables

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00551310
Date09 July 2009
CreatorsBerthet, Sophie
PublisherUniversité Paris-Est
Source SetsCCSD theses-EN-ligne, France
Languagefra
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0021 seconds