Return to search

Articular cartilage tissue engineering using chondrogenic progenitor cell homing and 3D bioprinting

Articular cartilage damage associated with joint trauma seldom heals and often leads to osteoarthritis (OA). Current treatment often fails to regenerated functional cartilage close to native tissue. We previously identified a migratory chondrogenic progenitor cell (CPC) population that responded chemotactically to cell death and rapidly repopulated the injured cartilage matrix, which suggested their potential for cartilage repair. To test that potential we filled experimental full thickness chondral defects with an acellular hydrogel containing SDF-1α. We expect that SDF-1α can increase the recruitment of CPCs, and then promote the formation of a functional cartilage matrix with chondrogenic factors. Full-thickness bovine chondral defects were filled with hydrogel comprised of fibrin and hyaluronic acid and containing SDF-1α. Cell migration was monitored, followed by chondrogenic induction. Regenerated tissue was evaluated by histology, immunohistochemistry, and scanning electron microscopy. Push-out tests were performed to assess the strength of integration between regenerated tissue and host cartilage. Significant numbers of progenitor cells were recruited by SDF-1α within 12 days. By 5 weeks chondrogenesis, repair tissue cell morphology, proteoglycan density and surface ultrastructure were similar to native cartilage. SDF-1α treated defects had significantly greater interfacial strength than untreated controls. However, regenerated neocartilage had relatively inferior mechanical properties compared with native cartilage. In addition to that, we developed a 3D bioprinting platform, which can directly print chondrocytes as well as CPCs to fabricated articular cartilage tissue in vitro. We successfully implanted the printed tissue into an osteochondral defect, and observed tissue repair after implantation. The regerated tissue has biochemical and mechanical properties within the physiological range of native articular cartilage. This study showed that, when CPC chemotaxis and chondrogenesis are stimulated sequentially, in situ full thickness cartilage regeneration and bonding of repair tissue to surrounding cartilage could occur without the need for cell transplantation from exogenous sources. This study also demonstrated the potential of using 3D bioprinting to engineer articular cartilage implants for repairing cartilage defect.

Identiferoai:union.ndltd.org:uiowa.edu/oai:ir.uiowa.edu:etd-8429
Date01 May 2015
CreatorsYu, Yin
ContributorsMartin, James A.
PublisherUniversity of Iowa
Source SetsUniversity of Iowa
LanguageEnglish
Detected LanguageEnglish
Typedissertation
Formatapplication/pdf
SourceTheses and Dissertations
RightsCopyright © 2015 Yin Yu

Page generated in 0.0026 seconds