Return to search

Apprentissage De Modèles Pour La Commande De La Mobilité Interne En Robotique

La robotique de service est un domaine émergent où il est nécessaire de commander des robots en interaction forte avec leur environnement. Ce travail présente une méthode adaptative de commande combinant de l'apprentissage de modèles de la mécanique à de la commande dans l'espace opérationnel de robots redondants. L'apprentissage des modèles cinématiques est obtenu soit par dérivation de modèles géométriques appris, soit par apprentissage direct. Ces modèles cinématiques, également appelés matrices Jacobiennes, peuvent être utilisés dans le calcul de pseudo-inverses ou de projecteurs pour la commande de robots. Cette combinaison de méthodes permet d'obtenir un contrôleur qui s'adapte à la géométrie du robot command é. En utilisant les mêmes algorithmes d'apprentissage, il est possible d'apprendre un modèle dynamique inverse du robot contr^olé de manière à le commander en couple plutôt qu'en vitesse, l'avantage étant de pouvoir s'adapter aux modifications dynamiques qui s'appliquent sur le robot comme par exemple l'application d'une force extérieure ou l'ajout d'un poids. Des expériences en simulation menées dans le cadre de cette thèse montrent comment réaliser plusieurs tâches hiérarchiques ou comment s'adapter à des perturbations avec des modèles appris. Des expériences sur le robot iCub ont également été menées afin de rendre compte de la plausibilité de l'approche proposée sur un système réel.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00545534
Date30 August 2010
CreatorsSalaün, Camille
PublisherUniversité Pierre et Marie Curie - Paris VI
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0017 seconds