In recent years, it has been shown that microlensing is a powerful tool for examining the atmospheres of stars in the Galactic bulge and Magellanic Clouds. The high gradient of magnification across the source during both small impact parameter events and caustic crossings offers a unique opportunity for determining the surface brightness profile of the source. Furthermore, models indicate that these events can also provide an appreciable polarization signal: arising from differential magnification across the otherwise symmetric source. Earlier work has addressed the signal from a scattering photosphere for both point mass lenses and caustic crossings. In a previous paper, polarimetric variations from point lensing of a circumstellar envelope were considered, as would be suitable for an extended envelope around a red giant. In this work, we examine the polarization in the context of caustic crossing events, the scenario that represents the most easily accessible situation for actually observing a polarization signal in Galactic microlensing. Furthermore, we present an analysis of the effectiveness of using the polarimetric data to determine the envelope properties, illustrating the potential of employing polarimetry in addition to photometry and spectroscopy with microlensing follow-up campaigns.
Identifer | oai:union.ndltd.org:ETSU/oai:dc.etsu.edu:etsu-works-7494 |
Date | 11 February 2006 |
Creators | Ignace, Richard, Bjorkman, J., Bryce, H. |
Publisher | Digital Commons @ East Tennessee State University |
Source Sets | East Tennessee State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | ETSU Faculty Works |
Page generated in 0.0021 seconds