<p>Reduced-scale models have become an attractive alternative to full-scale experimental laboratory testing due to both physical and fmandal restrictions. In order to have confidence in the ability of a reduced-scale model to replicate fullscale prototype behaviour, test data from reduced-scale research must be correlated and compared to test results of full-scale, prototype, materials. The overall goal of the following thesis is to provide a detailed comparison between third-scale models and full-scale prototype masonry materials, assemblages and wall components. The study includes a total of three phases of experimental testing. The first phase focuses on the individual elements that make up a reinforced concrete masonry shear wall. Elements examined include: third-scale model concrete blocks, mortar, grout and reinforcing steel. The second phase of the reseflrch project focuses on testing different configurations of masonry assemblages in an attempt to combine individual third-scale model elements into a composite assemblage to correlate behaviour to that ofpreviously tested full-scale<br />assemblages. The third and final phase of research compares two third-scale reinforced masonry shear walls to full-scale walls testing previously at McMaster University. In general, the third-scale model specimens showed good relation to full-scale prototypes for both the individual components and shear walls.</p> / Master of Applied Science (MASc)
Identifer | oai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/9047 |
Date | January 2010 |
Creators | Hughes, Kevin J. |
Contributors | El-Dakhakhni, Wael W., Drysdale, Robert G., Civil Engineering |
Source Sets | McMaster University |
Detected Language | English |
Type | thesis |
Page generated in 0.0023 seconds