This thesis discusses the design, fabrication, and testing of a high efficiency, dual band radio frequency power amplifier. While it is difficult to demonstrate an exact mode of operation for power amplifiers at radio frequencies, based on the characteristics of the transistor itself, the argument can be made that our high efficiency performance is due to an approximation to class E operation. The PA is designed around a CGH40025 transistor manufactured by Cree, Inc, which has developed a very useful nonlinear model of its transistor, which allows use of software load/source pull methods to determine optimum impedances to be presented to the gate and drain (hereafter referred to as source and load) of the transistor at each band of operation. A recent work on dual-band impedance matching is then used to design distributed element networks in order to present conjugate matches of these impedances to the transistor. This is followed by a careful layout, after which the PA is then fabricated on a low-impedance substrate using a LPKF Protomat S63 rapid prototyping machine. Measurements of gain and drain current provide values for power-added-efficiency. Simulated gains were 21 and 18 dB at 800 MHz and 1.85 GHz, respectively, with PAE around 63% for both bands. Measurements taken from the fabricated PA showed gains of 20 and 16 dB at each band, but PAE of 80% at 800 MHz and 43% at 1.85 GHz.
Identifer | oai:union.ndltd.org:unt.edu/info:ark/67531/metadc271879 |
Date | 05 1900 |
Creators | Poe, David R. |
Contributors | Kim, Hyoung Soo, Zhang, Hualiang, Fu, Shengli |
Publisher | University of North Texas |
Source Sets | University of North Texas |
Language | English |
Detected Language | English |
Type | Thesis or Dissertation |
Format | Text |
Rights | Public, Poe, David R., Copyright, Copyright is held by the author, unless otherwise noted. All rights Reserved. |
Page generated in 0.0024 seconds