Return to search

Groupes d’Inertie et Variétés Jacobiennes / Inertia Groups and Jacobian Varieties

Soient k un corps algébriquement clos de caractéristique p > 0 et C/k une courbe projective, lisse, intègre de genre g > 1 munie d’un p-groupe d’automorphismes G tel que |G| > 2p/(p-1)g. Le couple (C,G) est appelé grosse action. Si (C,G) est une grosse action, alors |G| <=4p/(p-1)^2g^2 (*). Dans cette thèse, nous étudions les répercussions arithmétiques des propriétés géométriques de grosses actions. Nous étudions d’abord l’arithmétique de l’extension de monodromie sauvage maximale de courbes sur un corps local K d’inégale caractéristique p à corps résiduel algébriquement clos, de genre arbitrairement grand ayant pour potentielle bonne réduction une grosse action satisfaisant le cas d’égalité de (*). On étudie en particulier les conducteurs de Swan attachés à ces courbes. Nous donnons ensuite les premiers exemples, à notre connaissance, de grosses actions (C,G) telles que le groupe dérivé D(G) soit non abélien. Ces courbes sont obtenues comme revêtements de S-corps de classes de rayons de P1(Fq) pour S non vide un sous-ensemble fini de P1(Fq). Enfin, on donne une méthode de calcul des S-corps de classes de Hilbert de revêtements abéliens de la droite projective d’exposant p et supersinguliers que l’on illustre pour des courbes de Deligne-Lusztig. / Let k be an algebraically closed field of characteristic p > 0 and C/k be a projective,smooth, integral curve of genus g > 1 endowed with a p-group of automorphisms G such that |G| > 2p/(p-1)g. The pair (C,G) is called big action. If (C,G) is a big action, then |G|<=4p/(p-1)^2g^2 (*). In this thesis, one studies arithmetical repercussions of geometric properties of big actions. One studies the arithmetic of the maximal wild monodromy extension of curves over a local field K of mixed characteristic p with algebraically closed residue field, with arbitrarily high genus having for potential good reduction a big action achieving equality in (*). One studies the associated Swan conductors. Then, one gives the first examples, to our knowledge, of big actions (C,G) with non abelian derived group D(G). These curves are obtained as coverings of S-ray class fields of P1(Fq) where S is a finite non empty subset of P1(Fq). Finally, one describes a method to compute S-Hilbert class fields of supersingular abelian covers of the projective line having exponent p and one illustrates it for some Deligne-Lusztig curves.

Identiferoai:union.ndltd.org:theses.fr/2013BOR14785
Date13 June 2013
CreatorsChrétien, Pierre
ContributorsBordeaux 1, Matignon, Michel
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0019 seconds