V této práci se zabýváme vylepšením systémů pro odhalení síťových průniků. Konkrétně se zaměřujeme na behaviorální analýzu, která využívá data extrahovaná z jednotlivých síťových spojení. Tyto informace využívá popsaný framework k obfuskaci cílených síťových útoků, které zneužívají zranitelností v sadě soudobých zranitelných služeb. Z Národní databáze zranitelností od NIST vybíráme zranitelné služby, přičemž se omezujeme jen na roky 2018 a 2019. Ve výsledku vytváříme nový dataset, který sestává z přímých a obfuskovaných útoků, provedených proti vybraným zranitelným službám, a také z jejich protějšků ve formě legitimního provozu. Nový dataset vyhodnocujeme za použití několika klasifikačních technik, a demonstrujeme, jak důležité je trénovat tyto klasifikátory na obfuskovaných útocích, aby se zabránilo jejich průniku bez povšimnutí. Nakonec provádíme křížové vyhodnocení datasetů pomocí nejmodernějšího datasetu ASNM-NPBO a našeho datasetu. Výsledky ukazují důležitost opětovného trénování klasifikátorů na nových zranitelnostech při zachování dobrých schopností detekovat útoky na staré zranitelnosti.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:417204 |
Date | January 2020 |
Creators | Sedlo, Ondřej |
Contributors | Malinka, Kamil, Homoliak, Ivan |
Publisher | Vysoké učení technické v Brně. Fakulta informačních technologií |
Source Sets | Czech ETDs |
Language | English |
Detected Language | Unknown |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0017 seconds