Return to search

Inférence de réseaux de régulation orientés pour les facteurs de transcription d'Arabidopsis thaliana et création de groupes de co-régulation / Inference of directed regulatory networks on the transcription factors of Arabidopsis thaliana and setting up of co-regulation groups

Dans cette thèse, nous cherchons à caractériser les facteurs de transcription de la plante Arabidopsis thaliana, gènes importants pour la régulation de l'expression du génome. À l'aide de données d'expression, notre objectif biologique est de classer ces facteurs de transcription en groupes de gènes co-régulateurs et en groupes de gènes co-régulés. Nous procédons en deux phases pour y parvenir. La première phase consiste à construire un réseau de régulation entre les facteurs de transcription. La seconde phase consiste en la classification des facteurs de transcription selon les liens de régulation établis par ce réseau. D'un point de vue statistique, les facteurs de transcription sont les variables et les données d'expression sont les observations. Nous représentons le réseau à inférer par un graphe orienté dont les nœuds sont les variables. L'estimation de ses arêtes est vue comme un problème de sélection de variables en grande dimension avec un faible nombre d'unités statistiques. Nous traitons ce problème à l'aide de régressions linéaires pénalisées de type LASSO. Une approche préliminaire qui consiste à sélectionner un ensemble de variables du chemin de régularisation par le biais de critères de vraisemblance pénalisée s'avère être instable et fournit trop de variables explicatives. Pour contrecarrer cela, nous proposons et mettons en compétition deux procédures de sélection, adaptées au problème de la haute dimension et mêlant régression linéaire pénalisée et rééchantillonnage. L'estimation des différents paramètres de ces procédures a été effectuée dans le but d'obtenir des ensembles de variables stables. Nous évaluons la stabilité des résultats à l'aide de jeux de données simulés selon notre modèle graphique. Nous faisons appel ensuite à une méthode de classification non supervisée sur chacun des graphes orientés obtenus pour former des groupes de nœuds vus comme contrôleurs et des groupes de nœuds vus comme contrôlés. Pour évaluer la proximité entre les classifications doubles des nœuds obtenus sur différents graphes, nous avons développé un indice de comparaison de couples de partition dont nous éprouvons et promouvons la pertinence. D'un point de vue pratique, nous proposons une méthode de simulation en cascade, exigée par la complexité de notre modèle et inspirée du bootstrap paramétrique, pour simuler des jeux de données en accord avec notre modèle. Nous avons validé notre modèle en évaluant la proximité des classifications obtenues par application de la procédure statistique sur les données réelles et sur ces données simulées. / This thesis deals with the characterisation of key genes in gene expression regulation, called transcription factors, in the plant Arabidopsis thaliana. Using expression data, our biological goal is to cluster transcription factors in groups of co-regulator transcription factors, and in groups of co-regulated transcription factors. To do so, we propose a two-step procedure. First, we infer the network of regulation between transcription factors. Second, we cluster transcription factors based on their connexion patterns to other transcriptions factors.From a statistical point of view, the transcription factors are the variables and the samples are the observations. The regulatory network between the transcription factors is modelled using a directed graph, where variables are nodes. The estimation of the nodes can be interpreted as a problem of variables selection. To infer the network, we perform LASSO type penalised linear regression. A preliminary approach selects a set of variable along the regularisation path using penalised likelihood criterion. However, this approach is unstable and leads to select too many variables. To overcome this difficulty, we propose to put in competition two selection procedures, designed to deal with high dimension data and mixing linear penalised regression and subsampling. Parameters estimation of the two procedures are designed to lead to select stable set of variables. Stability of results is evaluated on simulated data under a graphical model. Subsequently, we use an unsupervised clustering method on each inferred oriented graph to detect groups of co-regulators and groups of co-regulated. To evaluate the proximity between the two classifications, we have developed an index of comparaison of pairs of partitions whose relevance is tested and promoted. From a practical point of view, we propose a cascade simulation method required to respect the model complexity and inspired from parametric bootstrap, to simulate data under our model. We have validated our model by inspecting the proximity between the two classifications on simulated and real data.

Identiferoai:union.ndltd.org:theses.fr/2017SACLS475
Date08 December 2017
CreatorsVasseur, Yann
ContributorsUniversité Paris-Saclay (ComUE), Celeux, Gilles, Martin-Magniette, Marie-Laure
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0031 seconds