This work deals with the diagnosis of Parkinson's disease by analyzing the speech signal. At the beginning of this work there is described speech signal production. The following is a description of the speech signal analysis, its preparation and subsequent feature extraction. Next there is described Parkinson's disease and change of the speech signal by this disability. The following describes the symptoms, which are used for the diagnosis of Parkinson's disease (FCR, VSA, VOT, etc.). Another part of the work deals with the selection and reduction symptoms using the learning algorithms (SVM, ANN, k-NN) and their subsequent evaluation. In the last part of the thesis is described a program to count symptoms. Further is described selection and the end evaluated all the result.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:218971 |
Date | January 2011 |
Creators | Bílý, Ondřej |
Contributors | Smékal, Zdeněk, Mekyska, Jiří |
Publisher | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0017 seconds