Return to search

Alteration Spatially Associated with the Phoenix Unconformity-Related Uranium Deposit, Athabasca Basin, Saskatchewan, Canada

Unconformity-related uranium deposits in the Athabasca Basin represent a significant global resource of uranium. One such deposit, the Phoenix Deposit, discovered in 2007 on Denison Mine’s Wheeler River property, shares similarities with other deposits in the Basin. The Phoenix Deposit is located at the apex between a basement shear structure, and the unconformity between the crystalline basement and overlying sandstones. The shear structure extends into the sandstones, this structure controls the distribution of alteration minerals in the basement and early alteration phases in sandstones. The shear structure extending to sandstones is not spatially associated with late alteration phases associated with the uranium deposit, suggesting that the structure was not important for uranium mineralisation.
Bulk rock compositions of sandstones show chimney-like distribution of elements above the uranium deposit. The most notable ones are the distribution of yttrium, and boron. Rare earth elements and yttrium are not soluble in aqueous fluids at low temperatures and they are enriched in uranium ore. Therefore, the chimney-like distribution of elements are attributed to uraniferous hydrothermal activity in sandstones.
Petrographic and chemical analysis of alteration associated with the Phoenix Deposit shows two types of tourmaline, a pre-ore (Tur 1) in the basement, which is likely a metamorphic product (Tur1) and a syn-ore magnesiofoitite (Tur 2) in the basement and the sandstones. Three generations of chlorite are identified within the alteration halo of the Phoenix Deposit; an early Fe-rich clinochlore (C1) in the basement and sandstones, the second generation, Mg-rich sudoitic chlorite (C2) in the basement, and a late, sudoitic chlorite (C3) in the basement and sandstones. Illite shows three types; an early and late M1 and a late M2. M1 is found as two polytypes, 1Mc and 1Mt, in the basement and sandstones, with the 1Mt having a spatial relationship with the uranium deposit. Late M2 illite is coarse-grained and occurs in the basement and sandstones.
Near Infrared (NIR) spectra of sandstones overlying the deposit shows absorption features between 600 and 700 nm. It is considered that these absorption features appear to have been produced during late hydrothermal activity and may have a temporal as well as spatial relationship with uranium mineralisation.

Identiferoai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/38882
Date08 March 2019
CreatorsDann, Jack
ContributorsHattori, Keiko
PublisherUniversité d'Ottawa / University of Ottawa
Source SetsUniversité d’Ottawa
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf

Page generated in 0.0016 seconds