A mild gasification method has been developed to provide an innovative clean coal technology. The objective of this study is to developed a numerical model to investigate the thermal-flow and gasification process inside a specially designed fluidized-bed mild gasifier using the commercial CFD solver ANSYS/FLUENT. Eulerain-Eulerian method is employed to calculate both the primary phase (air) and secondary phase (coal particles). The Navier-Stokes equations and seven species transport equations are solved with three heterogeneous (gas-solid), two homogeneous (gas-gas) global gasification reactions. Development of the model starts from simulating single-phase turbulent flow and heat transfer to understand the thermal-flow behavior followed by five global gasification reactions, progressively with adding one equation at a time. Finally, the particles are introduced with heterogeneous reactions. The simulation model has been successfully developed. The results are reasonable but require future experimental data for verification.
Identifer | oai:union.ndltd.org:uno.edu/oai:scholarworks.uno.edu:td-1100 |
Date | 17 December 2010 |
Creators | Mazumder, AKM Monayem Hossain |
Publisher | ScholarWorks@UNO |
Source Sets | University of New Orleans |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | University of New Orleans Theses and Dissertations |
Page generated in 0.0019 seconds