As a novel high temperature fuel cell, the direct carbon fuel cell (DCFC) is drawing ever-increasing attention due to its significant high conversion efficiency, diversified fuel resources and low pollution compared with conventional coal-fired power plants. Despite the advantages of the DCFC technology, there are a number of fundamental and technological challenges which need to be overcome for its further development and commercialization. One of the major hurdles in current study of the DCFC is that the efficacy of carbon fuels is still unclear. Meanwhile, the effects of impurities in the carbon fuels on the performance and lifetime of the DCFC are still up for debate. Furthermore, the molecular-level study on the mechanism of electrochemical oxidation of carbon fuels in the DCFC is limited by the lack of techniques to detect the reaction intermediates at high temperature. Finally, how to scale up the DCFC system with suitable hardware materials and optimum structural designs needs further investigation. Based on successfully developing a DCFC system with a stirring molten carbonate electrolyte, various commercial and self-made carbon fuels including activated carbons, carbon blacks, graphitic carbons, coals and carbon nanofibers (CNFs) are systematically characterized and evaluated in this thesis. It is found that the nature of carbon fuels plays an important role in the anodic performance of the DCFC. A higher surface area and a smaller particle size of carbon fuel can effectively improve its electrochemical reactivity by increasing the interaction between the carbon particles and the molten carbonate electrolyte. On the contrary, a higher graphitic degree of carbon fuel results in a lower electrochemical reactivity in the DCFC due to the less reactive sites such as edges and defects on carbon surface. Furthermore, the order of the electrochemical reactivities for carbon fuels is in good agreement with the concentration of oxygen-containing functional groups on their surface, which is believed to play a key role in the electrochemical oxidation of carbons in the DCFC. In order to better understand the relationship between the surface chemistry of carbons and their electrochemical performance in the DCFC, various pre-treatment techniques including acid washing, air-plasma treatment, air oxidation, pyrolysis and the pre-electrochemical oxidation (in molten alkali carbonate electrolytes) have been conducted on the carbon fuels. It is shown that both the HNO3 washing and pre-electrochemical oxidation are much more effective to improve the electrochemical reactivities of carbon fuels compared to other pre-treatment techniques, which is attributed to the significant changes in the microstructure of carbon fuels and more surface oxygen functional groups produced during the pre-treatments. In contrast, the pyrolysis treatment results in a sharp decrease of electrochemical reactivity of carbon fuels due to the decreases in oxygen-containing surface groups and surface areas, and the increase of their graphitic degrees. For the sake of the optimum operational conditions for the DCFC system, the influences of stirring rates, the carbon fuel loadings and fuel cell temperatures on the anodic performance of the DCFC are investigated. It has been shown that the carbon discharge rates can be significantly boosted by effective stirring and high carbon fuel concentrations due to an improved mass transport. A higher operation temperature can also increase the current density and open circuit voltage of the DCFC. However, the complete electrochemical oxidation of carbon into CO2 can be only achieved at the low operation temperature of 600-700 ºC, while the partially electrochemical oxidation of carbon into CO occurs at 800 ºC, which will significantly decrease the carbon efficiency to less than 10% at 800 ºC. In the study of self-made CNFs as fuels for the DCFC, both microstructure and electrochemical reactivity of CNFs are highly dependent on their synthesis conditions. Compared with Ni-Al2O3 catalyst, the coprecipitated Ni-Cu-Al2O3 catalyst produced more CNFs with higher electrochemically reactivity. Over the same catalyst, the CNFs synthesized at lower temperature typically have higher surface areas, more surface oxygen functional groups and lower graphitic degrees, thereby leading to a higher electrochemical reactivity in the DCFC tests. In an effort to study the catalytic effects of mineral impurities on the electrochemical performance of the DCFC, Al2O3 and SiO2 present passivation effects in the anodic reaction. In contrast, the CaO, MgO and Fe2O3 show catalytic effects in the carbon electrochemical oxidation, which is demonstrated by the increases of current densities at low over-potentials in the polarization curves.
Identifer | oai:union.ndltd.org:ADTP/253985 |
Creators | Xiang Li |
Source Sets | Australiasian Digital Theses Program |
Detected Language | English |
Page generated in 0.002 seconds