Return to search

Modelling of extreme climate regimes

The climate of the Neoproterozoic Snowball Earth is tested in the UKMO Unified Model, specifically the HadCM3 climate model. The model is largely left unchanged, but the boundary conditions, both external and initial, are adjusted to create experiments based on the Snowball Earth hypothesis. The model can reproduce multiple equilibrium climates, as have been seen in energy balance models of the Earth's climate. The modelled present day and Neoproterozoic versions of Earth can both reproduce both ice capped and ice covered climate states. Neither can reproduce a climate which remains ice free throughout the year, even with an equilibrated ocean or elevated levels of C02. In all cases the ice free climate reverts toward the ice capped climate after the first polar winter. The modelled Neoproterozoic ice covered climate, that is the climate of Snowball Earth, has a climate very different from the present day. These changes are mostly driven by the lower thermal inertia, latitudinal temperature differences and the changed meridional circulation that results. The weather of the modelled Snowball Earth climate is also very different, dom- inated by a strong diurnal variation due to solar heating, as opposed to the more varied weather in the present day. The model responds well to the conditions of the Snowball Earth climate, with temperatures similar to those predicted by a simple physical model. The model responds less well to high levels of C02 in the Snowball Earth climate. The ice model also allows excessive heat and moisture to escape from the ocean into the atmosphere compared to that that would be predicted from solid ice coverage of the ocean. The exit from a Snowball Earth state was also tested within the model. Neither an decrease in albedo nor an increase in CO2 is unable to increase the temperature of the climate system sufficiently to exit the Snowball Earth state.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:572595
Date January 2007
CreatorsSpain, Timothy C.
ContributorsRead, P. L. ; Lewis, S. R.
PublisherUniversity of Oxford
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation

Page generated in 0.0021 seconds