Return to search

Motion planning of bipedal wall climbing robots

The development of wall climbing robots is relatively recent, beginning with some large scale robots in the early 1990s. Wall climbing robots can be used to gain access to or inspect space that is not easily accessible or dangerous for human operators. The range of applicable fields encompasses industrial processes and inspection, exploration, rescue and monitoring. The smaller robots can be used for surveillance purposes due to their stealthy nature. Larger crawling robots may be used to carry out specific tasks such as sand blasting of ship hulls and blasting and spray painting of large containers such as cylindrical storage tanks used by the chemical, petroleum and nuclear industries. Their flexibility and mobility mean that they can accomplish tasks that would be impossible for more conventional robots. The flexibility of mobility that such robots gain from their ability to move on all surfaces rather than only horizontal ones creates some unique challenges. Broadly, they can be split into three categories: robot design, robot control and motion planning, and environmental mapping and localisation. This thesis examines the first two of these problems. A prototype bipedal robot has been built and a second designed in order to capitalise on the experience gained with the first. An in-depth examination of the motion planning problem has been made and new techniques to tackle this problem have been developed. Such techniques are not limited to applications with wall climbing robots as there is commonality with more traditional fixed manipulators. Finally, the planning techniques were combined with the robot design in a test scenario that validated both the design and the motion planning techniques developed throughout the dissertation.

Identiferoai:union.ndltd.org:ADTP/258271
Date January 2009
CreatorsWard, James Robert, Mechanical & Manufacturing Engineering, Faculty of Engineering, UNSW
PublisherPublisher:University of New South Wales. Mechanical & Manufacturing Engineering
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
Rightshttp://unsworks.unsw.edu.au/copyright, http://unsworks.unsw.edu.au/copyright

Page generated in 0.0017 seconds