Return to search

Deep Convolutional Neural Networks for Multiclassification of Imbalanced Liver MRI Sequence Dataset

Application of deep learning in radiology has the potential to automate workflows, support radiologists with decision support, and provide patients a logic-based algorithmic assessment. Unfortunately, medical datasets are often not uniformly distributed due to a naturally occurring imbalance. For this research, a multi-classification of liver MRI sequences for imaging of hepatocellular carcinoma (HCC) was conducted on a highly imbalanced clinical dataset using deep convolutional neural network. We have compared four multi classification classifiers which were Model A and Model B (both trained using imbalanced training data), Model C (trained using augmented training images) and Model D (trained using under sampled training images). Data augmentation such as 45-degree rotation, horizontal and vertical flip and random under sampling were performed to tackle class imbalance. HCC, the third most common cause of cancer-related mortality [1], can be diagnosed with high specificity using Magnetic Resonance Imaging (MRI) with the Liver Imaging Reporting and Data System (LI-RADS). Each individual MRI sequence reveals different characteristics that are useful to determine likelihood of HCC. We developed a deep convolutional neural network for the multi-classification of imbalanced MRI sequences that will aid when building a model to apply LI-RADS to diagnose HCC. Radiologists use these MRI sequences to help them identify specific LI-RADS features, it helps automate some of the LIRADS process, and further applications of machine learning to LI-RADS will likely depend on automatic sequence classification as a first step. Our study included an imbalanced dataset of 193,868 images containing 10 MRI sequences: in- phase (IP) chemical shift imaging, out-phase (OOP) chemical shift imaging, T1-weighted post contrast imaging (C+, C-, C-C+), fat suppressed T2 weighted imaging (T2FS), T2 weighted imaging, Diffusion Weighted Imaging (DWI), Apparent Diffusion Coefficient map (ADC) and In phase/Out of phase (IPOOP) imaging. Model performance for Models A, B, C and D provided a macro average F1 score of 0.97, 0.96, 0.95 and 0.93 respectively. Model A showed higher classification scores than models trained using data augmentation and under sampling. / Thesis / Master of Science (MSc)

Identiferoai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/25780
Date January 2020
CreatorsTrivedi, Aditya
ContributorsDoyle, Thomas, eHealth
Source SetsMcMaster University
LanguageEnglish
Detected LanguageEnglish
TypeThesis

Page generated in 0.0019 seconds