Though the Aerospace industry is moving towards small satellites and smaller sensor technologies, sensors used for close-proximity operations are generally cost (and often size and power) prohibitive for University-class satellites. Given the need for low-cost, low-mass solutions for close-proximity relative navigation sensors, this research analyzed the expected errors due to near-field effects using a coarse sun sensor as part of a 6-degree-of-freedom (6-dof) solution. To characterize these near-field effects, a test bed (Characterization Test Apparatus or CTA) was proposed, its design presented, and the design stage uncertainty analysis of the CTA performed. A candidate coarse sun sensor (NorthStarTM) was chosen for testing, and a mathematical model of the sensor’s functionality was derived. Using a Gaussian Least Squares Differential Correction (GLSDC) algorithm, the model parameters were estimated and a comparison between simulated NorthStarTM measurements and model estimates was performed. Results indicate the CTA is capable of resolving the near-field errors. Additionally, this research found no apparent show stoppers for using coarse sun sensors for 6-dof solutions.
Identifer | oai:union.ndltd.org:tamu.edu/oai:repository.tamu.edu:1969.1/ETD-TAMU-2010-08-8440 |
Date | 2010 August 1900 |
Creators | Stancliffe, Devin Aldin |
Contributors | Reed, Helen L. |
Source Sets | Texas A and M University |
Language | en_US |
Detected Language | English |
Type | thesis, text |
Format | application/pdf |
Page generated in 0.002 seconds