L’IRM de diffusion est une modalité d’imagerie médicale qui suscite un intérêt croissant dans larecherche en neuro-imagerie. Elle permet de caractériser in vivo l’organisation neuronale et apportepar conséquent de nouvelles informations sur les fibres de la matière blanche. En outre, il a étémontré que chaque région corticale a une signature spécifique pouvant être décrite par des mesuresde connectivité. Notre travail de recherche a ainsi porté sur la conception d’une méthode deparcellisation du cortex entier à partir de ces métriques. En se basant sur de précédents travaux dudomaine (thèse de P. Roca 2011), ce travail propose une nouvelle analyse de groupe permettantl’obtention d’une segmentation individuelle ou moyennée sur la population d'étude. Il s’agit d’unproblème difficile en raison de la variabilité interindividuelle présente dans les données. Laméthode a été testée et évaluée sur les 80 sujets de la base ARCHI. Des aspects multimodaux ontété abordés pour comparer nos parcellisations structurelles avec d’autres parcellisations ou descaractéristiques morphologiques calculées à partir des modalités présentes dans la base de données.Une correspondance avec la variabilité de l’anatomie corticale, ainsi qu’avec des parcellisations dedonnées d’IRM fonctionnelle, a pu être montrée, apportant une première validationneuroscientifique. / Résumé anglais :Diffusion MRI is a medical imaging modality of great interest in neuroimaging research. Thismodality enables the characterization in vivo of neuronal organization and thus providinginformation on the white matter fibers. In addition, each cortical region has been shown to have aspecific signature, which can be described by connectivity measures. Our research has focused onthe design of a whole cortex parcellation method driven by these metrics. Based on the previouswork of P. Roca 2011, a new group analysis is proposed to achieve an individual or populationaveraged segmentation. This is a difficult problem due to the interindividual variability present inthe data. The method was tested and evaluated on the 80 subjects of the ARCHI database.Multimodal aspects were investigated to compare the proposed structural parcelliations with otherparcellations or morphological characteristics derived from the modalities present in the database. Aconnection between the variability of cortical anatomy and parcellations of the functional MRI datawas demonstrated, providing a first neuroscientist validation.
Identifer | oai:union.ndltd.org:theses.fr/2015PA112149 |
Date | 09 September 2015 |
Creators | Lefranc, Sandrine |
Contributors | Paris 11, Mangin, Jean-François |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text, StillImage |
Page generated in 0.0023 seconds