Return to search

Estudo e desenvolvimento de algoritmos para agrupamento fuzzy de dados em cenários centralizados e distribuídos / Study and development of fuzzy clustering algorithms in centralized and distributed scenarios

Agrupamento de dados é um dos problemas centrais na áea de mineração de dados, o qual consiste basicamente em particionar os dados em grupos de objetos mais similares (ou relacionados) entre si do que aos objetos dos demais grupos. Entretanto, as abordagens tradicionais pressupõem que cada objeto pertence exclusivamente a um único grupo. Essa hipótese não é realista em várias aplicações práticas, em que grupos de objetos apresentam distribuições estatísticas que possuem algum grau de sobreposição. Algoritmos de agrupamento fuzzy podem lidar naturalmente com problemas dessa natureza. A literatura sobre agrupamento fuzzy de dados é extensa, muitos algoritmos existem atualmente e são mais (ou menos) apropriados para determinados cenários, por exemplo, na procura por grupos que apresentam diferentes formatos ou ao operar sobre dados descritos por conjuntos de atributos de tipos diferentes. Adicionalmente, existem cenários em que os dados podem estar distribuídos em diferentes locais (sítios de dados). Nesses cenários o objetivo de um algoritmo de agrupamento de dados consiste em encontrar uma estrutura que represente os dados existentes nos diferentes sítios sem a necessidade de transmissão e armazenamento/processamento centralizado desses dados. Tais algoritmos são denominados algoritmos de agrupamento distribuído de dados. O presente trabalho visa o estudo e aperfeiçoamento de algoritmos de agrupamento fuzzy centralizados e distribuídos existentes na literatura, buscando identificar as principais características, vantagens, desvantagens e cenários mais apropriados para a aplicação de cada um deles, incluindo análises de complexidade de tempo, espaço e de comunicação para os algoritmos distribuídos / Data clustering is a fundamental conceptual problem in data mining, in which one aims at determining a finite set of categories to describe a data set according to similarities among its objects. Traditional algorithms assume that each object belongs exclusively to a single cluster. This may be not realistic in many applications, in which groups of objects present statistical distributions with some overlap. Fuzzy clustering algorithms can naturally deal with these problems. The literature on fuzzy clustering is extensive, several fuzzy clustering algorithms with different characteristics and for different purposes have been proposed and investigated and are more (or less) suitable for specific scenarios, e.g., finding clusters with different shapes or working with data sets described by different types of attributes. Additionally, there are scenarios in which the data are (or can be) distributed among different sites. In these scenarios, the goal of a clustering algorithm consists in finding a structure that describes the distributed data without the need of data and processing centralization. Such algorithms are known as distributed clustering algorithms. The present document aims at the study and improvement of centralized and distributed fuzzy clustering algorithms, identifying the main characteristics, advantages, disadvantages and appropriate scenarios for each application, including complexity analysis of time, space and communication for the distributed algorithms

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-10092012-163429
Date05 July 2012
CreatorsVendramin, Lucas
ContributorsCampello, Ricardo José Gabrielli Barreto
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguagePortuguese
Detected LanguagePortuguese
TypeDissertação de Mestrado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.0022 seconds