Return to search

Image Quality Analysis Using GLCM

Gray level co-occurrence matrix has proven to be a powerful basis for use in texture classification. Various textural parameters calculated from the gray level co-occurrence matrix help understand the details about the overall image content. The aim of this research is to investigate the use of the gray level co-occurrence matrix technique as an absolute image quality metric. The underlying hypothesis is that image quality can be determined by a comparative process in which a sequence of images is compared to each other to determine the point of diminishing returns. An attempt is made to study whether the curve of image textural features versus image memory sizes can be used to decide the optimal image size. The approach used digitized images that were stored at several levels of compression. GLCM proves to be a good discriminator in studying different images however no such claim can be made for image quality. Hence the search for the best image quality metric continues.

Identiferoai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:etd-1186
Date01 January 2004
CreatorsGadkari, Dhanashree
PublisherSTARS
Source SetsUniversity of Central Florida
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceElectronic Theses and Dissertations

Page generated in 0.0021 seconds