Return to search

Application of Oxy-fuel combustion on South African Coals using Thermogravimetric Analyses (TGA)

A dissertation submitted to the Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg, in fulfillment of the requirements for the degree of Master of Science in Engineering.
Johannesburg, 2016 / The quality and grade of South African coal is declining simultaneously with depleting seams. This has a negative impact on power generation and the economics of coal mining and power production. The reason is that good quality coal is more difficult to mine and hence costly, thus affecting coal prices and the ability of mines to supply coal quality of the required specifications. There is a global environmental awareness around the CO2 greenhouse gas and its effect on global warming. Legislations are becoming more stringent in limiting the amount of greenhouse gases and air pollutants we produce. In power generation, the most prominent greenhouse gas is carbon dioxide (CO2) and the most prominent air pollutants are oxides of Nitrogen and Sulphur (NOx and SOx). Oxy-fuel combustion (OFC) is a process change that can reduce the production of CO2 by increasing the concentration of oxygen in combusting air. A study is presented here, that focuses on the application of this process (OFC) to South African coals. Three different coal types were studied and characterized by conventional proximate and ultimate analyses and further characterized and graded by more specialized analyses; petrographic analyses and the quantitative evaluation of minerals b scanning electron microscopy (QEMSCAN). The gasification of the coals was then modeled to determine, qualitatively, its magnitude in comparison to combustion (oxidation) in oxy-fuel combustion. However, when modeling and conducting experiments to determine this, it was found that existing empirical formulae used to quantify char burnout are not suitable for all South African types of coal. The formulae found in literature (for both oxidation and gasification) could only be applied to two of the three samples. For the two samples that were successfully modeled, it was found that reactivity in gasification was probable but not to a significant level. For the third sample that couldn’t be modeled successfully, a recommendation was made that a new model be developed to take into account the nature of low grade, high inertinite South African coal. This is required in order to successfully formulate the char burnout of South African coals and thus depict with certainty, the applicability of Oxy-fuel combustion on South African
coals. Such a step would benefit the forthcoming studies on modeling the char burnout of South African coal and therefore contribute to addressing the challenge of declining coal quality in South Africa. / MT2017

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:wits/oai:wiredspace.wits.ac.za:10539/22672
Date January 2017
CreatorsMolise, Dorcas
Source SetsSouth African National ETD Portal
LanguageEnglish
Detected LanguageEnglish
TypeThesis
FormatOnline resource (xviii, 142 leaves), application/pdf

Page generated in 0.0127 seconds