Return to search

Rheological characterisation of low-rank coal ash at high temperatures.

Title page, summary and table of contents only. The complete thesis in print form is available from the University of Adelaide Library. / Ash deposition is a problem in power generation when coal with high ash and alkali contents are utilised. The problem is more severe in fluidised bed combustion where the ash deposition can causes agglomeration of the bed material, may lead to defluidisation of the unit. The successful operation of fluid bed combustion with coal high in ash and alkali content will depend on the ability to control ash deposition. The rheological properties of coal ash under furnace conditions are important in controlling the stickiness and mobility of the molten ash deposition. Therefore, a good knowledge of the rheological properties of coal will improve the understanding of the mechanisms associated with ash deposition, and may assist in controlling the deposition and agglomeration of fluid bed material. At present, a good deal of information about coal ash rheology under conditions similar to those found in fluidised bed combustion is not known, and greater understanding is required. This is primarily due to a lack of reliable instruments and measurement techniques. In this work, a new high temperature rheometer has been developed based on the principle concepts of visco metric flow. The developed rheometer allows fundamental rheological properties, such as shear stress and shear rate, to be obtained without relying on calibrations with materials of known properties. With this instrument the flow characteristics of the tested samples can be determined directly, without assuming a particular fluid model. The new rheometer has the capability to measure the rheological properties of materials at temperatures ranging from 500°C to 1300°C and under different processing conditions. Rheological characteristics and properties of a range of low rank Australian coal ashes have been carried out using the newly developed high temperature rheometer, equipped with a cone and plate measuring geometry. It has been found that coal ash samples exhibit thixotropic and visco plastic flow behaviours. SEM and XRD analyses have revealed that during high temperature rheological measurements the coal ash sample is basically a suspension of colloidal mineral solids in a molten eutectic liquid. The solid phase is mainly silica (SiO₂,), and the liquid phase is a mixture of alkali sulphates mainly CaS0₄, MgS0₄ and Na₂S0₄ compounds. The equilibrium visco metric data of coal ash samples is found to be satisfactorily described using the Herschel-Bulkley model. The equilibrium rheological properties are strongly affected by the concentration levels of CaS0₄, MgS0₄ and Na₂S0₄ . The operating temperature and chemical composition of the surrounding gas phase were also found to affect the rheological properties of the coal ash samples. In order to obtain a better understanding and to model the rheological properties of the coal ashes, a series of synthetic ash mixtures were examined. The synthetic mixtures contained the key chemical components that represent the solid and the liquid phases. The solid phase is represented by silica (SiO₂), while a mixture of CaS0₄, MgS0₄ and Na₂S0₄ compounds represented the liquid phase. In this work, the rheological characteristics of mixtures of synthetic ash were investigated using a factorial experimental design. Using the synthetic ash mixtures together with the statistical design experiment, the effect of key chemical compounds on the rheological properties could be systematically investigated. The rheological results showed that the synthetic mixtures exhibited thixotropic and viscoplastic behaviours. It was also found that mixtures predominantly high in CaS0₄and MgS0₄ had a high degree of thixotropy behaviour, while those mixtures predominantly high in Na₂S0₄ showed a lower degree of thixotropy behaviour. The statistical analysis also showed that Na₂S0₄ is the most significant chemical compound causes a high yield stress and high viscosity. In contrast, CaS0₄and MgS0₄ were found to decrease the value of the yield stress and the viscosity. The rheological behaviour of the synthetic ash mixtures can be used to describe rheological behaviour of the coal ash samples. Relationships between equilibrium flow properties and chemical compounds, and temperatures are developed using a linear regression method. The statistical analysis has shown that CaS0₄, MgS0₄ and Na₂S0₄ , and their interactions are all significant compounds that have effects on the yield stress and viscosity of the synthetic mixtures. It was also found that the yield stress and viscosity decreased with increasing concentration level of either CaS0₄or MgS0₄ . Yield stress and viscosity are increased with increases in the concentration of Na₂S0₄ . The statistical models can successfully predict rheological properties of ash with high concentrations of CaS0₄, MgS0₄ and Na₂S0₄ , but it fails to predict the rheological properties of ashes that also high concentrations of either Fe₂0₃ or Al₂0₃, or a combination of both. The relationship between ash rheology and fluidised bed agglomeration has been established. The yield stress of a coal ash may be used to describe the tendency of the molten ash to deposit on surface of the fluid bed particles. Yield stress also determines the tendency of stickiness of the molten ash deposit to adhere the fluid bed particles during fluidised bed combustion process. The viscosity of the molten ash describes the ability of the molten ash layer to adhere the fluid bed particles after a collision. High viscosity ash tend to hold the colliding particles together longer than a low viscosity ash. Shear thinning behaviour of the ash samples (decreasing viscosity with increasing shear rate) suggests that the operating conditions could be arranged so as to minimise the chance of agglomeration. For example, in order to avoid agglomeration a high viscosity coal ash would benefit from operating the fluidised bed combustion at a high velocity, this is because a high velocity means a higher shear rate and this causes a reduction in the viscosity of the molten ash. Thus, particles agglomerated by a low viscosity ash would be easily broken by the hydrodynamic forces present during the fluidised bed process. Finally, information about ash rheology has formed a basic knowledge for estimating tendency of fluid bed agglomeration when coal obtained from different source is being used. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1141958 / Thesis (Ph.D.) -- University of Adelaide, School of Chemical Engineering, 2004

Identiferoai:union.ndltd.org:ADTP/286353
Date January 2004
CreatorsTonmukayakul, Narongsak
Source SetsAustraliasian Digital Theses Program
Detected LanguageEnglish

Page generated in 0.0049 seconds