The fundamental requirement for a coal preparation plant is to transform low value run-of-mine (ROM) material into high value marketable products. The significant aspect relative to the plant is that any gain in efficiency flows almost entirely to the "bottom line" for the operation. The incremental quality concept has gained wide acceptance as the best method to optimize the overall efficiency of the various cleaning circuits. Simply stated, the concept requires that all the cleaning circuits operate as near as possible to the same incremental quality. To ensure optimal efficiency, a plant that receives ROM feed from multiple sources must develop a strategy to operate at the same incremental quality, which yields wide ranges in product qualities from the individual ROM coals. In order to provide products that meet contract specifications, clean coal stockpiles can be utilized to accept coals with various qualities, such as "premium," "low," and "filler" qualities, with shipments formulated from the stockpiles to meet product specifications. A more favorable alternative is raw coal blending to produce the specified clean coal qualities. This study will review the incremental quality concept and present case studies in applying the concept to meet product specifications. / Master of Science
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/50493 |
Date | 09 September 2014 |
Creators | Wimmer, Christopher Lance |
Contributors | Mining and Minerals Engineering, Luttrell, Gerald H., Ripepi, Nino S., Adel, Gregory T. |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Thesis |
Format | ETD, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0023 seconds