Return to search

Determining Factors that Influence Smooth Cordgrass (Spartina alterniflora Loisel) Transplant Success In Community-Based Living Shoreline Projects

Efforts to mitigate shoreline erosion through living shoreline methods along the USA Atlantic seaboard have often incorporated the cultivation and transplantation of smooth cordgrass, Spartina alterniflora. Assessments of these transplants at several sites in the Indian River Lagoon have shown that survival is variable after a year (survival: 10-93%). Lower survival has been attributed to environmental variables such as dislodgement by wave energy, and transplant shock due to salinity changes from cultivation to estuarine conditions. To improve living shoreline projects, we examined the effects of cultivation salinity (0 ppt, 15ppt) on transplantation success, and the success of anchoring plants to biodegradable mats (Jute mesh, 5 individuals per 50 cm2) and utilizing oyster bags as breakwaters in facilitating reestablishment of new transplants. Spartina alterniflora individuals were grown under salinity treatments for 20 weeks; plants grown in 15 ppt produced new shoots with significantly greater heights than those grown in freshwater. The plants were then transplanted to two sites in the IRL, and monitored after four weeks. After four weeks there was a greater net increase in stem density and larger decrease in plant height for plants grown in 15 ppt. Jute-mesh mats and oyster bags did not impact growth or survival of transplants. Low-saline (15 ppt) conditions increased shoot growth of the project by 50% in four weeks at a cost of 30 cents per additional shoot produced by an individual. Longer-term monitoring will determine if benefits persist or decrease over time, and if the cost is justified by the benefits.

Identiferoai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:honorstheses-1073
Date01 January 2016
CreatorsCarrion, Steven A
PublisherSTARS
Source SetsUniversity of Central Florida
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceHonors Undergraduate Theses

Page generated in 0.0021 seconds