In general, yield reduction in most dryland maize growing areas of South Africa occur because seasonal rainfall distribution is erratic with annual variation that cannot be predicted accurately. Cultivar selection, planting date and plant density are other factors that consistently affect maize yield. Long growing season maize cultivars are higher yielding, particularly under conditions of good moisture and nutrient supply. However, as both moisture and nutrient availability becomes more limiting, yield tends to decline. Short growing season maize cultivars could yield more than long season counterparts because they can maximize the growing season and potentially reach the critical flowering stage before traditional midsummer droughts occur. The short growing season maize cultivars, which have only recently been developed, have traits, which can address the problem of reduced yield, which is ascribed to midsummer drought. There has been no previous effort to evaluate the effects of planting dates and plant densities on yield and yield components of these short and ultra-short growth period maize cultivars. This prompted research in the 2004/05 growing season. One field experiment was conducted at each of two selected areas (Bethlehem&Potchefstroom) in the “Maize Triangle” of South Africa. The aim was to evaluate the response of short and ultra-short growth period maize cultivars to planting dates and plant densities at two localities with distinct environmental conditions. The effects of planting date, plant density and cultivar on yield and yield components were investigated. Both yield and yield components were affected by planting date, plant density and cultivar at both localities. At both localities early and optimum planting dates as well as low and optimum plant densities promoted increases in yield components, which contributed to increased grain yield. As for the cultivars, PAN6017 proved to be the most consistent since it out-performed other cultivars in terms of both vegetative growth, yield components and grain yield at both localities. At both localities, plant height, leaf area index and dry matter yield were affected by both planting date and plant density, with optimum planting date and optimum plant density contributing to highest yield components and yield. PAN 6017 was superior to the other cultivars at all planting dates and plant densities at both localities. In order to make findings from a study such as this applicable to the “Maize Triangle”, more research on short and ultra-short growth period maize cultivars should be conducted over a wider range of locations and seasons. / Dissertation (M Inst Agrar (Agronomy))--University of Pretoria, 2007. / Plant Production and Soil Science / M Inst Agrar / unrestricted
Identifer | oai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:up/oai:repository.up.ac.za:2263/28056 |
Date | 20 September 2007 |
Creators | Kgasago, Hans |
Contributors | Van Averbeke, Wim, Reinhardt, Carl Frederick (Charlie), Steyn, J.M. (Joachim Marthinus), 1963-, kgasagoh@arc.agric.za |
Publisher | University of Pretoria |
Source Sets | South African National ETD Portal |
Detected Language | English |
Type | Dissertation |
Rights | © University of Pretor |
Page generated in 0.0026 seconds