Return to search

TMPRSS3 dont les mutations sont responsables des surdités humaines DFNB8/10, joue un rôle crucial dans la survie des cellules sensorielles lors de l'entrée en fonction cochléaire : caractérisation du modèle animal et identification des voies de signalisation impliquées / TMPRSS3 mutated in the human deafness DFNB8/10, is critical for sensory cells survival at the onset of hearing : characterization of the animal model and identification of implicated molecular pathways.

TMPRSS3 est une sérine protéase mutée dans les surdités humaines DFNB8/10. Pour déterminer le rôle de cette protéine dans la physiologie cochléaire, nous avons généré puis caractérisé le phénotype auditif d'un modèle murin mimant la pathologie humaine. Les souris mutantes homozygotes sont profondément sourdes, due à une perte rapide et complète des cellules sensorielles cochléaires au moment de leur entrée en fonction. Afin de caractériser les mécanismes moléculaires responsables de la perte de ces cellules, nous avons comparé le protéome de souris sauvages et mutantes par des gels en 2-dimensions. Nous avons ensuite analysé les spots variants par spectrométrie de masse, ce qui nous a permis de reconstruire les réseaux dans lesquels les protéines variantes interviennent. Parmi les réseaux identifiés, nous avons focalisé notre analyse sur celui du canal potassique BK, puisque sa mise en place est concomitante de la dégénérescence des cellules sensorielles. Par des expériences d'immunohistochimie et de patch-clamp, nous avons pu montrer dans les cellules sensorielles de la cochlée, une réduction de l'expression membranaire et de l'activité de ce canal en l'absence de Tmprss3 fonctionnelle. Le résultat original de notre travail est qu'une sérine protéase est capable de réguler le canal potassique BK. / TMPRSS3 is a type II serine protease mutated in human DFNB8/10 deafness. In order to determine the role of this protein in the cochlear physiology, we generated a mutant mice and phenotyped it. We found that homozygous mutant mice are profoundly deaf, due to a rapid and drastic degeneration of cochlear sensory cells at the onset of hearing. In order to decipher the molecular mechanism leading to sensory cells degeneration, we compared the cochlear proteome of wild type and homozygous mice using 2-dimensions gels. Then, we analyzed variant spots using mass spectrometry. Using bioinformatics, we clustered the protein in signaling pathways. We focused on the network centered on BK potassium channel because this channel appears at the onset of hearing, the time when sensory cells degenerate. Using immunohistochemistry and patch-clamp techniques, we were able to show that in the absence of a functional Tmprss3, membranous expression and activity of BK channel are altered in cochlear sensory cells. The original finding of our work is that a serine protease is able to modulate BK potassium channel.

Identiferoai:union.ndltd.org:theses.fr/2011MON1T026
Date07 December 2011
CreatorsFasquelle, Lydie
ContributorsMontpellier 1, Delprat, Benjamin
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0021 seconds