Le LPC est un complément à la lecture labiale qui facilite la communication des malentendants. Sur le principe, il s'agit d'effectuer des gestes avec une main placée à côté du visage pour désambigüiser le mouvement des lèvres, qui pris isolément est insuffisant à la compréhension parfaite du message. Le projet RNTS TELMA a pour objectif de mettre en place un terminal téléphonique permettant la communication des malentendants en s'appuyant sur le LPC. Parmi les nombreuses fonctionnalités que cela implique, il est nécessaire de pouvoir reconnaître le geste manuel du LPC et de lui associer un sens. L'objet de ce travail est la segmentation vidéo, l'analyse et la reconnaissance des gestes de codeur LPC en situation de communication. Cela fait appel à des techniques de segmentation d'images, de classification, d'interprétation de geste, et de fusion de données. Afin de résoudre ce problème de reconnaissance de gestes, nous avons proposé plusieurs algorithmes originaux, parmi lesquels (1) un algorithme basé sur la persistance rétinienne permettant la catégorisation des images de geste cible et des images de geste de transition, (2) une amélioration des méthodes de multi-classification par SVM ou par classifieurs unaires via la théorie de l'évidence, assortie d'une méthode de conversion des probabilités subjectives en fonction de croyance, et (3) une méthode de décision partielle basée sur la généralisation de la Transformée Pignistique, afin d'autoriser les incertitudes dans l'interprétation de gestes ambigus.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00203360 |
Date | 26 October 2007 |
Creators | Burger, Thomas |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0023 seconds