Return to search

BAT Slew Survey (BATSS): Slew Data Analysis for the Swift-BAT Coded Aperture Imaging Telescope

The BAT Slew Survey (BATSS) is the first wide-field survey of the hard X-ray sky (15–150 keV) with a slewing coded aperture imaging telescope. Its fine time resolution, high sensitivity and large sky coverage make it particularly well-suited for detections of transient sources with variability timescales in the \(\sim 1 sec–1 hour\) range, such as Gamma-Ray Bursts (GRBs), flaring stars and Blazars. As implemented, BATSS observations are found to be consistently more sensitive than their BAT pointing-mode counterparts, by an average of 20% over the 10 sec–3 ksec exposure range, due to intrinsic systematic differences between them. The survey’s motivation, development and implementation are presented, including a description of the software and hardware infrastructure that made this effort possible. The analysis of BATSS science data concentrates on the results of the 4.8-year BATSS GRB survey, beginning with the discovery of GRB 070326 during its preliminary testing phase. A total of nineteen (19) GRBs were detected exclusively in BATSS slews over this period, making it the largest contribution to the Swift GRB catalog from all ground-based analysis. The timing and spectral properties of prompt emission from BATSS GRBs reveal their consistency with Swift long GRBs (L-GRBs), though with instances of GRBs with unusually soft spectra or X-Ray Flashes (XRFs), GRBs near the faint end of the fluence distribution accessible to Swift-BAT, and a probable short GRB with extended emission, all uncommon traits within the general Swift GRB population. In addition, the BATSS overall detection rate of 0.49 GRBs/day of instrument time is a significant increase (45%) above the BAT pointing detection rate. This result was confirmed by a GRB detection simulation model, which further showed the increased sky coverage of slews to be the dominant effect in enhancing GRB detection probabilities. A review of lessons learned is included, with specific proposals to broaden both the number and range of astrophysical sources found in future enhancements. The BATSS survey results provide solid empirical evidence in support of an all-slewing hard X-ray survey mission, a prospect that may be realized with the launch of the proposed MIRAX-HXI mission in 2017. / Physics

Identiferoai:union.ndltd.org:harvard.edu/oai:dash.harvard.edu:1/10436321
Date18 March 2013
CreatorsCopete, Antonio Julio
ContributorsGrindlay, Jonathan E., Stubbs, Christopher William
PublisherHarvard University
Source SetsHarvard University
Languageen_US
Detected LanguageEnglish
TypeThesis or Dissertation
Rightsopen

Page generated in 0.0021 seconds