Return to search

Algebraic curves and applications to coding theory.

by Yan Cho Hung. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1998. / Includes bibliographical references (leaves 122-124). / Abstract also in Chinese. / Chapter 1 --- Complex algebraic curves --- p.6 / Chapter 1.1 --- Foundations --- p.6 / Chapter 1.1.1 --- Hilbert Nullstellensatz --- p.6 / Chapter 1.1.2 --- Complex algebraic curves in C2 --- p.9 / Chapter 1.1.3 --- Complex projective curves in P2 --- p.11 / Chapter 1.1.4 --- Affine and projective curves --- p.13 / Chapter 1.2 --- Algebraic properties of complex projective curves in P2 --- p.16 / Chapter 1.2.1 --- Intersection multiplicity --- p.16 / Chapter 1.2.2 --- Bezout's theorem and its applications --- p.18 / Chapter 1.2.3 --- Cubic curves --- p.21 / Chapter 1.3 --- Topological properties of complex projective curves in P2 --- p.23 / Chapter 1.4 --- Riemann surfaces --- p.26 / Chapter 1.4.1 --- Weierstrass &-function --- p.26 / Chapter 1.4.2 --- Riemann surfaces and examples --- p.27 / Chapter 1.5 --- Differentials on Riemann surfaces --- p.28 / Chapter 1.5.1 --- Holomorphic differentials --- p.28 / Chapter 1.5.2 --- Abel's Theorem for tori --- p.31 / Chapter 1.5.3 --- The Riemann-Roch theorem --- p.32 / Chapter 1.6 --- Singular curves --- p.36 / Chapter 1.6.1 --- Resolution of singularities --- p.37 / Chapter 1.6.2 --- The topology of singular curves --- p.45 / Chapter 2 --- Coding theory --- p.48 / Chapter 2.1 --- An introduction to codes --- p.48 / Chapter 2.1.1 --- Efficient noiseless coding --- p.51 / Chapter 2.1.2 --- The main coding theory problem --- p.56 / Chapter 2.2 --- Linear codes --- p.58 / Chapter 2.2.1 --- Syndrome decoding --- p.63 / Chapter 2.2.2 --- Equivalence of codes --- p.65 / Chapter 2.2.3 --- An introduction to cyclic codes --- p.67 / Chapter 2.3 --- Special linear codes --- p.71 / Chapter 2.3.1 --- Hamming codes --- p.71 / Chapter 2.3.2 --- Simplex codes --- p.72 / Chapter 2.3.3 --- Reed-Muller codes --- p.73 / Chapter 2.3.4 --- BCH codes --- p.75 / Chapter 2.4 --- Bounds on codes --- p.77 / Chapter 2.4.1 --- Spheres in Zn --- p.77 / Chapter 2.4.2 --- Perfect codes --- p.78 / Chapter 2.4.3 --- Famous numbers Ar (n,d) and the sphere-covering and sphere packing bounds --- p.79 / Chapter 2.4.4 --- The Singleton and Plotkin bounds --- p.81 / Chapter 2.4.5 --- The Gilbert-Varshamov bound --- p.83 / Chapter 3 --- Algebraic curves over finite fields and the Goppa codes --- p.85 / Chapter 3.1 --- Algebraic curves over finite fields --- p.85 / Chapter 3.1.1 --- Affine varieties --- p.85 / Chapter 3.1.2 --- Projective varieties --- p.37 / Chapter 3.1.3 --- Morphisms --- p.89 / Chapter 3.1.4 --- Rational maps --- p.91 / Chapter 3.1.5 --- Non-singular varieties --- p.92 / Chapter 3.1.6 --- Smooth models of algebraic curves --- p.93 / Chapter 3.2 --- Goppa codes --- p.96 / Chapter 3.2.1 --- Elementary Goppa codes --- p.96 / Chapter 3.2.2 --- The affine and projective lines --- p.98 / Chapter 3.2.3 --- Goppa codes on the projective line --- p.102 / Chapter 3.2.4 --- Differentials and divisors --- p.105 / Chapter 3.2.5 --- Algebraic geometric codes --- p.112 / Chapter 3.2.6 --- Codes with better rates than the Varshamov- Gilbert bound and calculation of parameters --- p.116 / Bibliography

Identiferoai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_322199
Date January 1998
ContributorsYan, Cho Hung., Chinese University of Hong Kong Graduate School. Division of Mathematics.
Source SetsThe Chinese University of Hong Kong
LanguageEnglish, Chinese
Detected LanguageEnglish
TypeText, bibliography
Formatprint, 124 leaves ; 30 cm.
RightsUse of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.0037 seconds