Return to search

網路評比資料之統計分析 / Statistical analysis of online rating data

隨著網路的發達,各式各樣的資訊和商品也在網路上充斥著,使用者尋找資訊或是上網購物時,有的網站有推薦系統(recommender system)能提供使用者相關資訊或商品。若推薦系統能夠讓消費者所搜尋的相關資訊或商品能夠符合他們的習性時,便能讓消費者增加對系統的信賴程度,因此系統是否能準確預測出使用者的偏好就成為一個重要的課題。本研究使用兩筆資料,並以相關研究的三篇文獻進行分析和比較。這三篇文獻分別為IRT模型法(IRT model-based method)、相關係數法(correlation-coefficient method)、以及矩陣分解法(matrix factorization)。

在經過一連串的實證分析後,歸納出以下結論:
1. 模型法在預測方面雖然精確度不如其他兩種方法來的好,但是模型有解釋變數之間的關係以及預測機率的圖表展示,因此這個方法仍有存在的價值。
2. 相關係數法容易因為評分稀疏性的問題而無法預測,建議可以搭配內容式推薦系統的運作方式協助推薦。
3. 矩陣分解法在預測上雖然比IRT模型法還好,但分量的數字只是一個最佳化的結果,實際上無法解釋這些分量和數字的意義。 / With the growth of the internet, websites are full of a variety of information and products. When users find the information or surf the internet to shopping, some websites provide users recommender system to find with which related. Hence, whether the recommender system can predict the users' preference is an important topic. This study used two data,which are "Mondo" and "MovieLens", and we used three related references to analyze and compare them. The three references are following: IRT model-based method, Correlation-coefficient method, and Matrix factorization.

After the data analysis, we get the following conclusions:
1. IRT model-based method is worse then other methods in predicting, but it can explain the relationship of variables and display the graph of predicting probabilities. Hence this method still has it's value.
2. Correlation-coefficient method is hard to predict because of sparsity. We can connect it with content filtering approach.
3. Although matrix factorization is better then IRT model-based method in predicting, the vectors is a result of optimization. It may be hard to explain the meaning of the vectors.

Identiferoai:union.ndltd.org:CHENGCHI/G0098354010
Creators張孫浩
Publisher國立政治大學
Source SetsNational Chengchi University Libraries
Language中文
Detected LanguageEnglish
Typetext
RightsCopyright © nccu library on behalf of the copyright holders

Page generated in 0.0018 seconds