abstract: Building computational models of human problem solving has been a longstanding goal in Artificial Intelligence research. The theories of cognitive architectures addressed this issue by embedding models of problem solving within them. This thesis presents an extended account of human problem solving and describes its implementation within one such theory of cognitive architecture--ICARUS. The document begins by reviewing the standard theory of problem solving, along with how previous versions of ICARUS have incorporated and expanded on it. Next it discusses some limitations of the existing mechanism and proposes four extensions that eliminate these limitations, elaborate the framework along interesting dimensions, and bring it into closer alignment with human problem-solving abilities. After this, it presents evaluations on four domains that establish the benefits of these extensions. The results demonstrate the system's ability to solve problems in various domains and its generality. In closing, it outlines related work and notes promising directions for additional research. / Dissertation/Thesis / M.S. Computer Science 2011
Identifer | oai:union.ndltd.org:asu.edu/item:8918 |
Date | January 2011 |
Contributors | Trivedi, Nishant H. (Author), Langley, Patrick W (Advisor), Vanlehn, Kurt (Committee member), Kambhampati, Subbarao (Committee member), Arizona State University (Publisher) |
Source Sets | Arizona State University |
Language | English |
Detected Language | English |
Type | Masters Thesis |
Format | 65 pages |
Rights | http://rightsstatements.org/vocab/InC/1.0/, All Rights Reserved |
Page generated in 0.0017 seconds