In this work, interference and coherence phenomena, appearing in atomic and
molecular ensembles interacting with coherent light sources, as electromagnetically
induced transparency (EIT), coherent population trapping (CPT), and slow group
velocity of light are investigated. The goal of the project is to make the steps towards
various applications of these phenomena, first, by studying them in solid media (which
are the most advantageous for applications), second, by suggesting some novel applications
such as CPT-based plasma diagnostics, and realization of new types of
solid-state lasers (based on suppression of excited-state absorption via EIT). The
third goal of the project is extension of coherence and interference effects well-known
in optics to the gamma-ray range of frequencies and, correspondingly, from atomic to
nuclear transitions. A particular technique of chirped pulse compression applied to
M??ossbauer transitions is considered and the possibility of compression of M??ossbauer
radiation into ultrashort gamma-ray pulses is analyzed.
The theoretical treatment of the interference and coherence effects is based on
the semiclassical description of atom-light interaction, which is sufficient for correct
analysis of the phenomena considered here. Coherent media are considered in two-,
three-, and four-level approximations while their interaction with light is studied both
analytically and numerically using the Maxwell-Bloch set of equations.
Identifer | oai:union.ndltd.org:tamu.edu/oai:repository.tamu.edu:1969.1/2428 |
Date | 29 August 2005 |
Creators | Kuznetsova, Yelena Anatolyevna |
Contributors | Kocharovskaya, Olga A. |
Publisher | Texas A&M University |
Source Sets | Texas A and M University |
Language | en_US |
Detected Language | English |
Type | Book, Thesis, Electronic Dissertation, text |
Format | 4900538 bytes, electronic, application/pdf, born digital |
Page generated in 0.0017 seconds