Return to search

Role of Arabidopsis LTP12 in Environmental Stress Response

Lipid transfer proteins (LTPs) constitute a pervasive class of small proteins implicated in many biological and physiological processes, including seed development, germination, cuticle formation, and abiotic stress responses. In this study, we explored the role of Arabidopsis LTP12 protein in mitigating environmental stresses. To address this, we analyzed the T-DNA knockout mutant ltp12, focusing on its responses to salinity and osmotic stress. Utilizing antioxidant enzyme assays, phenotypic analyses (including water loss, chlorophyll content, seed germination rates, root length, and relative water content), and lipid profile analysis via Thin Layer Chromatography (TLC), we found that ltp12 mutants showed reduced catalase and peroxidase activities and poorer hydration, chlorophyll content, germination, and growth under stress, compared to wild-type Col-0 plants. Mutants delayed vegetative-to-floral phase transition compared to wild-type. Additionally, lipid analysis indicated that the wild-type plants had increased phospholipids under high osmotic stress, suggesting LTP12's involvement in lipid reorganization during stress responses.

Identiferoai:union.ndltd.org:ETSU/oai:dc.etsu.edu:etd-5949
Date01 May 2024
CreatorsGiri, Bikram
PublisherDigital Commons @ East Tennessee State University
Source SetsEast Tennessee State University
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceElectronic Theses and Dissertations
RightsCopyright by the authors.

Page generated in 0.0022 seconds