In cold temperatures, the survival of Salmonella enterica serovar Typhimurium (S. Typhimurium) requires the action of cold shock protein A (CspA) paralogues. These are thought to melt misfolded ribonucleic acids, facilitating their translation at low temperatures. However, through phenotypic analysis of our SL1344 csp null mutant (lacking all CspA paralogues), it has been shown that CspA paralogues function during other environmental stresses, outwith temperature reduction, and play an essential role in colony formation of an SL1344 rpoS mutant at 37°C. The general stress σ subunit, RpoS, plays an important role in adapting cells to a number of stresses including oxidative stress, temperature changes, low pH and stationary phase. Under such conditions, RpoS acts as an ‘emergency co-ordinator’, subsequently inducing the transcription of necessary stress response genes. In Escherichia coli, RpoS is regulated posttranscriptionally by at least three small RNAs (sRNAs): OxyS, DsrA and RprA; that require interactions with the Sm-like RNA chaperone, Hfq. In S. Typhimurium, the stability of the RpoS protein itself is regulated by ClpXP, an ATP-dependent protease responsible for RpoS degradation, and a specific recognition factor that targets RpoS to this protease, MviA. The present study has shown that the CspA paralogues of S. Typhimurium are involved in the expression of RpoS and aims to elucidate the role of these proteins in RpoS production. Comparative phenotypic tests were carried out in strains carrying mutations in rpoS, hfq and the csp genes to gain insight into the interactions of Hfq and CspA paralogues, with respect to RpoS expression. Both significant phenotypic overlaps, such as peroxide sensitivity, and phenotypes unique to certain mutant strains, such as cold acclimation in the csp null strain, were observed. CspA paralogues and Hfq are functionally distinct, not only in their involvement in RpoS expression, but also in RpoS-independent processes, such as cold acclimation, motility and to some extent, growth at 37°C. The roles of Hfq and the CspA paralogues, in RpoS expression, were also assessed at the molecular level. A combination of qRT-PCR analysis, transcriptional fusions and immunoblotting (with anti-σ antibodies) has shown that DsrA and RprA are not essential for RpoS expression in S. Typhimurium, during stationary phase or exponential cold shock, and do not require Hfq under these conditions. Contrary to reports in E. coli, DsrA is not induced upon cold shock in SL1344. Northern blots have shown that neither Hfq nor the CspA paralogues are involved in regulating rpoS transcription during either stationary phase at 37°C or cold shock in exponential phase. Immunoblotting and translational fusions have identified different pathways for the regulation of RpoS during stationary phase at 37°C and cold shock in exponential phase. Hfq is involved during the former condition only, whilst CspA paralogues are involved in both. Protein stability experiments have shown that the CspA paralogues do not play a major role in stabilising RpoS protein against degradation. Together, these results have pointed to a role for both the CspA paralogues and Hfq in facilitating the efficient translation of rpoS mRNA. An SL1344 csp null rpoS mutant is unable to form colonies on LB agar at 37°C, a phenomenon found when introducing combinations of mutations to SL1344 for phenotypic assessment. A conditional rpoS mutant revealed that the SL1344 csp null rpoS strain is viable but non-culturable. From the csp gene family, only cspA and cspB were able to restore colony forming ability to the rpoS mutant. Further complementation experiments pointed to faulty cell division, due to abnormal RNase E activity, as the cause.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:562993 |
Date | January 2010 |
Creators | Reyner, Jacqueline Louise |
Contributors | Gallagher, Maurice. ; Blakely, Garry |
Publisher | University of Edinburgh |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://hdl.handle.net/1842/4651 |
Page generated in 0.0014 seconds